Question

In: Math

Find the solution of y′′+6y′=144sin(6t)+576cos(6t) with y(0)=1 and y′(0)=9. y= _____

Find the solution of y′′+6y′=144sin(6t)+576cos(6t) with y(0)=1 and y′(0)=9.

y= _____

Solutions

Expert Solution


Related Solutions

1) . Solve the IVP: y^''+6y^'+5y=0, y(0)=1, y^' (0)=3 2. Find the general solution to each...
1) . Solve the IVP: y^''+6y^'+5y=0, y(0)=1, y^' (0)=3 2. Find the general solution to each of the following: a) y^''+2y^'+5y=e^2x b) y^''+2x/(x^2+1) y'=x c) y^''+4y=1/(sin⁡(2x)) (use variation of parameters)
Find the general solution of the following equations: y′′ −4y′ +4y=0; y′′ −5y′ +6y=0; y′′ −...
Find the general solution of the following equations: y′′ −4y′ +4y=0; y′′ −5y′ +6y=0; y′′ − 2y′ = 0
Find y as a function of x if y^(4)−6y′′′+9y′′=0, y(0)=7, y′(0)=11, y′′(0)=9, y′′′(0)=0.
Find y as a function of x if y^(4)−6y′′′+9y′′=0, y(0)=7, y′(0)=11, y′′(0)=9, y′′′(0)=0.
Find the general solution of the equations: a) y'' + 6y' +5y = 0 b) 16y"...
Find the general solution of the equations: a) y'' + 6y' +5y = 0 b) 16y" - 8y' + 145y = 0 c) 4y" - 4y' + y = 0
1. Find the solution of y" + 8y' = 896sin(8t) + 256cos(8t) with y(0) = 9...
1. Find the solution of y" + 8y' = 896sin(8t) + 256cos(8t) with y(0) = 9 and y'(0) = 9 y = ? 2. Find y as a function of x if y"' - 9y" + 18y' = 20e^x , y(0) = 30 , y'(0) = 23 , y"(0) = 17 y(x) = ?
Find the general solution for differential equation x^3y'''-(3x^2)y''+6xy'-6y=0, y(1)=2, y'(1)=1, y''(1)=-4  
Find the general solution for differential equation x^3y'''-(3x^2)y''+6xy'-6y=0, y(1)=2, y'(1)=1, y''(1)=-4  
Find the general solution of the differential equation y′′+36y=13sec^2(6t), 0<t<π/12.
Find the general solution of the differential equation y′′+36y=13sec^2(6t), 0<t<π/12.
Find the green's function then find the solution y"+4y=x y(0)=0, y'(1)=0
Find the green's function then find the solution y"+4y=x y(0)=0, y'(1)=0
Find the exact solution : y''+9y'=cosπt, y(0)=0,y'(0)=1
Find the exact solution : y''+9y'=cosπt, y(0)=0,y'(0)=1
Find the exact solution : y''+9y'=cosπt, y(0)=0,y'(0)=1
Find the exact solution : y''+9y'=cosπt, y(0)=0,y'(0)=1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT