Question

In: Advanced Math

1. Locate a root of sin(x)=x2 where x is in radians. Use a graphical technique and...

1. Locate a root of sin(x)=x2 where x is in radians. Use a graphical technique and bisection with
the initial interval from 0.5 to 1. Perform the computation until ea is less than es=2%. Also
perform an error check by substituting your final answer into the original equation.
2. Determine the positive real root of ln(x
2
)=0.7 using three iterations of the bisection method,
with initial interval of [0.5:2].
3. Determine the lowest positive root of f(x)=7sin(x)e
-x
-1 using (a) the Newton-Raphson
method (three iterations, xi=0.3). (b) the secant method (five iterations, xi-1=0.5 and xi=0.4). (c)
the modified secant method (three iterations, xi=0.3, δ=0.01).
4. Use the Newton-Raphson method to find the root of f(x)=e
-0.5x
(4-x)-2. Employ initial guesses
of (a) 2, (b) 6, and (c) 8. Explain your results.

Solutions

Expert Solution


Related Solutions

sin(tan-1 x), where |x| < 1, is equal to: (a) x/√(1 – x2) (b) 1/√(1 – x2) (c) 1/√(1 + x2) (d) x/√(1 + x2)
sin(tan-1 x), where |x| < 1, is equal to:(a) x/√(1 – x²)(b) 1/√(1 – x²)(c) 1/√(1 + x²)(d) x/√(1 + x²)
use bisection to find the real root x = sin(x) + 1 with the initial guesses...
use bisection to find the real root x = sin(x) + 1 with the initial guesses of x l = 0 and x u = 3. perform the computation until the approximate error falls below 5%
Find the root of the function f(x) = 8 - 4.5 ( x - sin x...
Find the root of the function f(x) = 8 - 4.5 ( x - sin x ) in the interval [2,3]. Exhibit a numerical solution using Newton method.
Use the False Position method to find a guess of the root of f(x) = cos(x2...
Use the False Position method to find a guess of the root of f(x) = cos(x2 ) with lower and upper bounds of 0 and 2, respectively. Then, narrow the interval and find a new guess of the root using False Position. What is your relative approximate error? a. 8.47% answer b. 12.45% c. 0.112 d. 0.243 e. None of the above Please provide complete solution how the answer is a thumbs up for correct and neat solution! step by...
The number of points in (-∞, ∞) for which x2 – x sin x – cos x = 0 is
The number of points in (-∞, ∞) for which x2 – x sin x – cos x = 0 is (a) 6 (b) 4 (c) 2 (d) 0    
The function Sine is defined as: where x is an angle in radians Write a Matlab...
The function Sine is defined as: where x is an angle in radians Write a Matlab script program to compute the sinus value of any angle as the following: - The program should run always until the user enters - 1 to exit from the program. - A sk user to enter: Number of elements (N) that should be included in the sum - C heck that N is a positive integer . [ Hint: use ( round (N) -...
Given that h(x) = x.sinx . Find the root of the function h(x) = 1, where...
Given that h(x) = x.sinx . Find the root of the function h(x) = 1, where x is between [0, 2] using substitution method.
Let f(x) = sin(πx). • x0 = 1,x1 = 1.25, and x2 = 1.6 are given....
Let f(x) = sin(πx). • x0 = 1,x1 = 1.25, and x2 = 1.6 are given. Construct Newton’s DividedDifference polynomial of degree at most two. • x0 = 1,x1 = 1.25,x2 = 1.6 and x3 = 2 are given. Construct Newton’s Divided-Difference polynomial of degree at most three.
Using Matlab 1. Solve the following equations set f1 (x1,x2) = sin (sin (x1)) +x2 f2...
Using Matlab 1. Solve the following equations set f1 (x1,x2) = sin (sin (x1)) +x2 f2 (x1,x2) = x1+ e^(x2) a) Can this equation set be solved by the fixed - point method with the following expressions? And why? Show your analysis with a 2D graph. g1 (x1,x2) = -e^(x2) g2 (x1,x2) = -sin⁡(x1) b) Use Newton Raphson Method with initial values x1 = -2, x2 = 1.5. (8 significant figures. Please submit the code and results.)
Find the Maclaurin series of f(x) = [sin(x2)]/x and find its radius of convergence.
Find the Maclaurin series of f(x) = [sin(x2)]/x and find its radius of convergence.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT