Question

In: Advanced Math

Find the root of the function f(x) = 8 - 4.5 ( x - sin x...

Find the root of the function f(x) = 8 - 4.5 ( x - sin x ) in the interval [2,3]. Exhibit a numerical solution using Newton method.

Solutions

Expert Solution

ANY DOUBT THEN COMMENT.... I WILL HELP YOU AS SOON AS POSSIBLE.. THANK YOU...


Related Solutions

Find the third MacLaurin polynomial for the function f(x) = e2x sin(3x)
Find the third MacLaurin polynomial for the function f(x) = e2x sin(3x)
Use the secant Method to find a root for the function: f(x) = x^3 + 2x^2...
Use the secant Method to find a root for the function: f(x) = x^3 + 2x^2 + 10x -20, with x_0 = 2, and x_1 = 1.
Consider the function on the interval (0, 2π). f(x) = sin(x) cos(x) + 2 (a) Find...
Consider the function on the interval (0, 2π). f(x) = sin(x) cos(x) + 2 (a) Find the open interval(s) on which the function is increasing or decreasing. (Enter your answers using interval notation.) increasing     ( )    decreasing     ( )   (b) Apply the First Derivative Test to identify all relative extrema. relative maxima     (x, y) =    (smaller x-value) (x, y) = ( )    (larger x-value) relative minima (x, y) =    (smaller x-value) (x, y) = ​   ...
Find the Fourier series for the function on the interval (-π,π) f(x) = 1 -sin(x)+3cos(2x) f(x...
Find the Fourier series for the function on the interval (-π,π) f(x) = 1 -sin(x)+3cos(2x) f(x )= cos2(x) f(x) = sin2(x)
Given the function f(x) on the right solve the following root finding questions: a) Find a...
Given the function f(x) on the right solve the following root finding questions: a) Find a positive root (x > 0) of f(x) using the Bisection Method . b) Find a negative root (x < 0) of f(x) using the Bisection Method. c) Find a positive root (x > 0) of f(x) using the False Position Method. d) Find a negative root (x < 0) of f(x) using the False Position Method. Find your initial Bracket via Trial-and-Error. Use |...
Consider the function on the interval (0, 2π). f(x) = sin(x)/ 2 + (cos(x))^2 (a) Find...
Consider the function on the interval (0, 2π). f(x) = sin(x)/ 2 + (cos(x))^2 (a) Find the open intervals on which the function is increasing or decreasing. (Enter your answers using interval notation.) increasing decreasing (b) Apply the First Derivative Test to identify the relative extrema. relative maximum (x, y) = relative minimum (x, y) =
use bisection to find the real root x = sin(x) + 1 with the initial guesses...
use bisection to find the real root x = sin(x) + 1 with the initial guesses of x l = 0 and x u = 3. perform the computation until the approximate error falls below 5%
Consider the root of function f(x) = x 3 − 2x − 5. The function can...
Consider the root of function f(x) = x 3 − 2x − 5. The function can be rearranged in the form x = g(x) in the following three ways: (a) x = g(x) = x3 − x − 5 (b) x = g(x) = (x 3 − 5)/2 (c) x = g(x) = thirdroot(2x + 5) For each form, apply fixed-point method with an initial guess x0 = 0.5 to approximate the root. Use the error tolerance = 10-5 to...
Find the real Fourier series of the piece-wise continuous periodic function f(x) = x+sin(x) -pi<=x<pi
Find the real Fourier series of the piece-wise continuous periodic function f(x) = x+sin(x) -pi<=x<pi
Estimate the area A between the graph of the function f(x)= square root of x and...
Estimate the area A between the graph of the function f(x)= square root of x and the interval [0,49]. Use an approximation scheme with n=2,5, and 10 rectangles. Use the right endpoints. Round your answers to three decimal places. A2= A5= A10= Click
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT