Question

In: Advanced Math

Use false position method to find the root of ?(?) = −sin(? − 5) + ?...

Use false position method to find the root of ?(?) = −sin(? − 5) + ? with initial guesses of 0.2 and 1. Show up to three iterations and calculate the relative percent error ?? for each iteration possible? Show full details for at least one iteration to get full points. Also, if three significant figure accuracy is required, show if the value after third iteration is acceptable or not.

Solutions

Expert Solution

  


Related Solutions

Use the False Position method to find a guess of the root of f(x) = cos(x2...
Use the False Position method to find a guess of the root of f(x) = cos(x2 ) with lower and upper bounds of 0 and 2, respectively. Then, narrow the interval and find a new guess of the root using False Position. What is your relative approximate error? a. 8.47% answer b. 12.45% c. 0.112 d. 0.243 e. None of the above Please provide complete solution how the answer is a thumbs up for correct and neat solution! step by...
use bisection to find the real root x = sin(x) + 1 with the initial guesses...
use bisection to find the real root x = sin(x) + 1 with the initial guesses of x l = 0 and x u = 3. perform the computation until the approximate error falls below 5%
In Sciland code, use the Newton Method to find the root of f(x)=10-x^2 and tol =10^-5
In Sciland code, use the Newton Method to find the root of f(x)=10-x^2 and tol =10^-5
Use the Fixed-Point Iteration Method to find the root of f ( x ) = x...
Use the Fixed-Point Iteration Method to find the root of f ( x ) = x e^x/2 + 1.2 x - 5 in the interval [1,2].
For the initial-value problem, ?'(?) = ?? sin(5?) , ?(0) = 0.5, Use the Euler Method...
For the initial-value problem, ?'(?) = ?? sin(5?) , ?(0) = 0.5, Use the Euler Method with step size of 0.1 to calculate the approximate solution for the differential equation for the initial condition y(0) = 0.5 and plot the result on the direction field graph you produced in paragraph 1. Then do the same for the results of using the Euler Method with step sizes of 0.01 and then 0.005. For the initial-value problem in paragraph 2 above, ?'(?)...
Find the root of the function f(x) = 8 - 4.5 ( x - sin x...
Find the root of the function f(x) = 8 - 4.5 ( x - sin x ) in the interval [2,3]. Exhibit a numerical solution using Newton method.
Use the Newton’s method to find the root for ex+1 = 2 + x, over [−2,...
Use the Newton’s method to find the root for ex+1 = 2 + x, over [−2, 2]. Can you find a way to numerically determine whether the convergence is roughly quadratic using error produced at each iteration? Include your answers as Matlab code comments
Use the secant Method to find a root for the function: f(x) = x^3 + 2x^2...
Use the secant Method to find a root for the function: f(x) = x^3 + 2x^2 + 10x -20, with x_0 = 2, and x_1 = 1.
use muller's method to find the roots of the equation f(x) = sin x - x/2...
use muller's method to find the roots of the equation f(x) = sin x - x/2 =0 near x=2
Using the bisection method, find the root of the following function: f(x)=cos(2x) - x Use the...
Using the bisection method, find the root of the following function: f(x)=cos(2x) - x Use the following initial values: xl=0 and xu=2 NOTE: Perform only 3 iterations.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT