In: Math
sin(tan-1 x), where |x| < 1, is equal to:
(a) x/√(1 – x²)
(b) 1/√(1 – x²)
(c) 1/√(1 + x²)
(d) x/√(1 + x²)
Correct Answer : (d) x / √(1 + x²)
Explanation :
Let tan-1 x = θ
Then, tan θ = x
From this, we can write the sin θ and cos θ values as:
sin θ = x / √(1 + x²)
cos θ = 1 / √(1 + x²)
Now, consider the given question,
sin (tan-1 x) = sin θ
= x / √(1 + x²) Since |x| < 1
Therefore, sin(tan-1 x) = x/√(1 + x2).
(d) x/√(1 + x²)