Question

In: Math

The number of points in (-∞, ∞) for which x2 – x sin x – cos x = 0 is

The number of points in (-∞, ∞) for which x2 – x sin x – cos x = 0 is

(a) 6

(b) 4

(c) 2

(d) 0

 

 

Solutions

Expert Solution

Let f(x) = x² – x sin x – cos x = 0

f’(x) = 2x – sin x – x cos x + sin x

=> 2x – x cos x = 0

When x> 0, f(x) is increasing.

When x< 0, f(x) is decreasing.

f(0) = -1

f(∞) = ∞

f(-∞) = ∞

lim x→ +∞f(x) = ∞

lim x→ -∞f(x) = ∞

Using the intermediate value theorem, it will cut the x-axis at 2 points.

Thus 2 solutions.

 

 


The number of points are 2.

Related Solutions

The function F(x) = x2 - cos(π x) is defined on the interval 0 ≤ x...
The function F(x) = x2 - cos(π x) is defined on the interval 0 ≤ x ≤ 1 radians. Explain how the Intermediate Value Theorem shows that F(x) = 0 has a solution on the interval 0 < x < .
a. (5 Marks) 1 1 cos(x)cos(y) = -cos(x-y) + -cos(x + y) 1 l sin(x)sin(y) =...
a. 1 1 cos(x)cos(y) = -cos(x-y) + -cos(x + y) 1 l sin(x)sin(y) = -cos(x-y)--cos(x+ y) 1 l sin(x)cos(y) =—sin(x-y) +-sin(x + y) A DSB-FC (double sideband-full carrier) signal s(t) is given by, s(t) = n cos(2rr/cf)+ cos(2«-/mt)cos(2«-fct) What is the numeric value for the AM index of modulation, m, fors(f) ?
Consider the function on the interval (0, 2π). f(x) = sin(x) cos(x) + 2 (a) Find...
Consider the function on the interval (0, 2π). f(x) = sin(x) cos(x) + 2 (a) Find the open interval(s) on which the function is increasing or decreasing. (Enter your answers using interval notation.) increasing     ( )    decreasing     ( )   (b) Apply the First Derivative Test to identify all relative extrema. relative maxima     (x, y) =    (smaller x-value) (x, y) = ( )    (larger x-value) relative minima (x, y) =    (smaller x-value) (x, y) = ​   ...
f (x) = -0.248226*cos (2 x) - 0.0184829*cos ((2+2)x) - 0.0594608*cos(x)*sin(x) + 0.123626*sin ((2+2)x). The intervall...
f (x) = -0.248226*cos (2 x) - 0.0184829*cos ((2+2)x) - 0.0594608*cos(x)*sin(x) + 0.123626*sin ((2+2)x). The intervall is ]0, 3/2[ What is the local maximum and local minimum? Answer with 5 decimals
Consider the function on the interval (0, 2π). f(x) = sin(x)/ 2 + (cos(x))^2 (a) Find...
Consider the function on the interval (0, 2π). f(x) = sin(x)/ 2 + (cos(x))^2 (a) Find the open intervals on which the function is increasing or decreasing. (Enter your answers using interval notation.) increasing decreasing (b) Apply the First Derivative Test to identify the relative extrema. relative maximum (x, y) = relative minimum (x, y) =
For the given function f(x) = cos(x), let x0 = 0, x1 = 0.25, and x2...
For the given function f(x) = cos(x), let x0 = 0, x1 = 0.25, and x2 = 0.5. Construct interpolation polynomials of degree at most one and at most two to approximate f(0.15)
Find the general solution of the differential equations. A: cos(x)y′(x) + y(x) sin(x) = 0 B:...
Find the general solution of the differential equations. A: cos(x)y′(x) + y(x) sin(x) = 0 B: 2xy + (x2 + y2)y′ = 0 C: (4x3 +2xy2 +1)dx+(2x2y−1)dy=0. D: x(4x3 +2xy2 +1)dx+x(2x2y−1)dy=0 with steps please.
Solve cos^2(x)-cos(x)=0 for x,
Solve cos^2(x)-cos(x)=0 for x,
Suppose u(t,x)solves the initial value problem Utt = 4Uxx + sin(wt) cos(x), u(0,x)= 0 , Ut(0,x)...
Suppose u(t,x)solves the initial value problem Utt = 4Uxx + sin(wt) cos(x), u(0,x)= 0 , Ut(0,x) = 0. Is h(t) = u(t,0) a periodic function? (PDE)
consider the IVP ( cos(x)sin(x) - xy^2)dx + (1-x^2)ydy = 0 , y(0) = 34 solve...
consider the IVP ( cos(x)sin(x) - xy^2)dx + (1-x^2)ydy = 0 , y(0) = 34 solve the IVP answer))) 1156 = ???
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT