Question

In: Statistics and Probability

A normal random variable x has mean μ = 1.8 and standard deviation σ = 0.18....

A normal random variable x has mean μ = 1.8 and standard deviation σ = 0.18. Find the probabilities of these X-values. (Round your answers to four decimal places.)

(a)    

1.00 < X < 1.50




(b)    

X > 1.39




(c)    

1.45 < X < 1.60

Solutions

Expert Solution

a)

Solution :

Given that ,

mean =   = 1.8

standard deviation = = 0.18   

P(1.00< x < 1.50) = P[(1.00-1.8) /0.18 < (x - ) / < (1.50-1.8) / 0.18)]

= P(-4.44 < Z < -1.67)

= P(Z < -1.67) - P(Z < -4.44)

Using z table   

= 0.0475 - 0

probability= 0.0475

b)

P(x >1.39 ) = 1 - P(x< 1.39)

= 1 - P[ X - / / (1.39-1.8) /0.18 ]

= 1 - P(z <-2.28 )

Using z table

= 1 - 0.0113

= 0.9887

probability= 0.9887

c)

P(1.45< x < 1.60) = P[(1.45-1.8) / 0.18< (x - ) / < (1.60-1.8) /018 )]

= P(-1.94 < Z < -1.11)

= P(Z < -1.11) - P(Z < -1.94)

Using z table   

= 0.1335 -0.0262

probability= 0.1073


Related Solutions

1) A normal random variable x has an unknown mean μ and standard deviation σ =...
1) A normal random variable x has an unknown mean μ and standard deviation σ = 2. If the probability that x exceeds 4.6 is 0.8023, find μ. (Round your answer to one decimal place.) μ = 2) Answer the question for a normal random variable x with mean μ and standard deviation σ specified below. (Round your answer to four decimal places.) μ = 1.3 and σ = 0.19. Find P(1.50 < x < 1.71). P(1.50 < x <...
A. A normal random variable has an unknown mean μ and a standard deviation σ =...
A. A normal random variable has an unknown mean μ and a standard deviation σ = 2. If the probability that x exceeds 6.5 is .9732; find μ. B. A standard normal random variable has μ = 0 and a standard deviation σ = 1. Find the probability of less than -2.73. C. A standard normal random variable has μ = 0 and a standard deviation σ = 1. Find the probability greater than 3.28. D. A standard normal random...
The random variable X has mean μ and standard deviation σ. A simple random sample of...
The random variable X has mean μ and standard deviation σ. A simple random sample of 50 values drawn from X has sample mean 14.7. Assuming the standard deviation is known to be 3.6, construct an 98% confidence interval for the value of μ. Put your answer in correct interval notation, (lower bound, upper bound), and round to three decimal places.
Given that x is a normal variable with mean μ = 49 and standard deviation σ...
Given that x is a normal variable with mean μ = 49 and standard deviation σ = 6.2, find the following probabilities. (Round your answers to four decimal places.) (a)  P(x ≤ 60) (b)  P(x ≥ 50) (c)  P(50 ≤ x ≤ 60)
Given that x is a normal variable with mean μ = 43 and standard deviation σ...
Given that x is a normal variable with mean μ = 43 and standard deviation σ = 6.9, find the following probabilities. (Round your answers to four decimal places.) (a) P(x ≤ 60) (b) P(x ≥ 50) (c) P(50 ≤ x ≤ 60)
Given that x is a normal variable with mean μ = 107 and standard deviation σ...
Given that x is a normal variable with mean μ = 107 and standard deviation σ = 11, find the following probabilities. (Round your answers to four decimal places.) (a)  P(x ≤ 120) (b)  P(x ≥ 80) (c)  P(108 ≤ x ≤ 117)
Given that x is a normal variable with mean μ = 49 and standard deviation σ...
Given that x is a normal variable with mean μ = 49 and standard deviation σ = 6.9, find the following probabilities. (Round your answers to four decimal places.) (a)  P(x ≤ 60) (b)  P(x ≥ 50) (c)  P(50 ≤ x ≤ 60)
Given that x is a normal variable with mean μ = 108 and standard deviation σ...
Given that x is a normal variable with mean μ = 108 and standard deviation σ = 14, find the following probabilities. (Round your answers to four decimal places.) (a) P(x ≤ 120) (b) P(x ≥ 80) (c) P(108 ≤ x ≤ 117)
Let X be a random variable with mean μ and standard deviation σ. Consider a new...
Let X be a random variable with mean μ and standard deviation σ. Consider a new random variable Z, obtained by subtracting the constant μ from X and dividing the result by the constant σ: Z = (X –μ)/σ. The variable Z is called a standardised random variable. Use the laws of expected value and variance to show the following: a E(Z) = 0 b V (Z) = 1
1. Consider a standard normal random variable with μ = 0 and standard deviation σ =...
1. Consider a standard normal random variable with μ = 0 and standard deviation σ = 1. (Round your answers to four decimal places.) (a)    P(z < 2) = (b)    P(z > 1.16) = (c)    P(−2.31 < z < 2.31) = (d)    P(z < 1.82) = 2. Find the following probabilities for the standard normal random variable z. (Round your answers to four decimal places.) (a)    P(−1.49 < z < 0.65) = (b)    P(0.56 < z < 1.74) = (c)    P(−1.54 < z < −0.46) = (d)    P(z...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT