In: Statistics and Probability
A normal random variable x has mean μ = 1.8 and standard deviation σ = 0.18. Find the probabilities of these X-values. (Round your answers to four decimal places.)
(a)
1.00 < X < 1.50
(b)
X > 1.39
(c)
1.45 < X < 1.60
a)
Solution :
Given that ,
mean = = 1.8
standard deviation = = 0.18
P(1.00< x < 1.50) = P[(1.00-1.8) /0.18 < (x - ) / < (1.50-1.8) / 0.18)]
= P(-4.44 < Z < -1.67)
= P(Z < -1.67) - P(Z < -4.44)
Using z table
= 0.0475 - 0
probability= 0.0475
b)
P(x >1.39 ) = 1 - P(x< 1.39)
= 1 - P[ X - / / (1.39-1.8) /0.18 ]
= 1 - P(z <-2.28 )
Using z table
= 1 - 0.0113
= 0.9887
probability= 0.9887
c)
P(1.45< x < 1.60) = P[(1.45-1.8) / 0.18< (x - ) / < (1.60-1.8) /018 )]
= P(-1.94 < Z < -1.11)
= P(Z < -1.11) - P(Z < -1.94)
Using z table
= 0.1335 -0.0262
probability= 0.1073