Question

In: Mechanical Engineering

A simple R134a plant is develop 70000kJ/hr of refrigerant leaves the evaporator as saturated vapor at...

A simple R134a plant is develop 70000kJ/hr of refrigerant leaves the evaporator as saturated vapor at 10 degree c. After isentropic compression the pressure of refrigerant is 10 bar. Draw the P-h diagram and determine 1) the refrigerant flow rate 2) the compressor discharge temperature 3) the heat rejected to the condenser in KW 4) The COP 5) the power required to drive the compressor

Solutions

Expert Solution


Related Solutions

An ideal vapor compression refrigeration cycle using r134a as the refrigerant is being used to cool...
An ideal vapor compression refrigeration cycle using r134a as the refrigerant is being used to cool a house. It provides 3 refrigeration tons ≈ 10.5kW of cooling (heat removal from the house air). The refrigerant in the evaporator operates at 400kPa while in the condenser it is at 1000kPa. Treat the surroundings as a thermal reservoir at 33◦C and the air in the house as a thermal reservoir at 19◦C. All reservoirs are at 100kPa. 1. What is the COPr...
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26oC with...
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26oC with a volumetric flow rate of 0.18 m3/s. Refrigerant exits at 8 bar, 70oC. Changes in kinetic and potential energy from inlet to exit can be ignored. Determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kW.
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -20oC with...
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -20oC with a volumetric flow rate of 0.18 m3/s. Refrigerant exits at 9 bar, 70oC. Changes in kinetic and potential energy from inlet to exit can be ignored. Determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kW.
Refrigerant-134a enters an adiabatic compressor as saturated vapor at 160 kPa at a rate of 2.8...
Refrigerant-134a enters an adiabatic compressor as saturated vapor at 160 kPa at a rate of 2.8 m3/min and is compressed to a pressure of 900 kPa. Determine the minimum power that must be supplied to the compressor. Use the tables for R-134a. The minimum power that must be supplied to the compressor
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 2 bar, and saturated liquid exits the condenser at 10 bar. The isentropic compressor efficiency is 80%. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor power, in kW. (b) the refrigeration capacity, in tons. (c) the coefficient of performance.
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant...
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant at 40 °C leaving the condenser and entering the heat exchanger is used to superheat the saturated vapor refrigerant leaving the evaporator at 7 °C by 8 °C. If the compressor is capable of pumping 5 l/s of vapor refrigerant measured at the inlet to the compressor and the compression processes are considered isentropic in both cases listed below, determine; (a) The refrigerating capacity...
Refrigerant 22 undergoes a constant-pressure process within a piston–cylinder assembly from saturated vapor at 5.0 bar...
Refrigerant 22 undergoes a constant-pressure process within a piston–cylinder assembly from saturated vapor at 5.0 bar to a final temperature of 25°C. Kinetic and potential energy effects are negligible. Evaluate the work and the heat transfer, each in kJ per kg of refrigerant.
Superheated steam at 8 MPa and 480°C leaves the steam generator of a vapor power plant....
Superheated steam at 8 MPa and 480°C leaves the steam generator of a vapor power plant. Heat transfer and frictional effects in the line connecting the steam generator and the turbine reduce the pressure and temperature at the turbine inlet to 7.7 MPa and 440°C, respectively. The pressure at the exit of the turbine is 10 kPa, and the turbine operates adiabatically. Liquid leaves the condenser at 8 kPa, 36°C. The pressure is increased to 8.6 MPa across the pump....
Superheated steam at 8 MPa and 480°C leaves the steam generator of a vapor power plant....
Superheated steam at 8 MPa and 480°C leaves the steam generator of a vapor power plant. Heat transfer and frictional effects in the line connecting the steam generator and the turbine reduce the pressure and temperature at the turbine inlet to 7.3 MPa and 440°C, respectively. The pressure at the exit of the turbine is 10 kPa, and the turbine operates adiabatically. Liquid leaves the condenser at 8 kPa, 36°C. The pressure is increased to 8.6 MPa across the pump....
Programming language= In Java and Oracle Sql You are required to develop a simple HR application...
Programming language= In Java and Oracle Sql You are required to develop a simple HR application for a small accounting firm that wishes to keep track of all the employees at the firm; storing details about their salary, phone numbers and Date of Birth. The firm has many departments and there are 5 to 20 employees in each department. The department information includes department name, description and total number of employees in that department. The company also provides vehicles for...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT