Question

In: Mechanical Engineering

An ideal vapor compression refrigeration cycle using r134a as the refrigerant is being used to cool...

An ideal vapor compression refrigeration cycle using r134a as the refrigerant is being used to cool a house. It provides 3 refrigeration tons ≈ 10.5kW of cooling (heat removal from the house air). The refrigerant in the evaporator operates at 400kPa while in the condenser it is at 1000kPa. Treat the surroundings as a thermal reservoir at 33◦C and the air in the house as a thermal reservoir at 19◦C. All reservoirs are at 100kPa.

1. What is the COPr of this cycle?

2. How fast is exergy destroyed (kJ/s) in each process (evaporator, condenser, throttle, compressor)?

3. Which process has the lowest second law efficiency?

4. What is the rate of exergy destruction (kJ/s) for the cycle?

Solutions

Expert Solution


Related Solutions

An ideal vapor compression refrigeration cycle with R134a as the working fluid operates between the pressure...
An ideal vapor compression refrigeration cycle with R134a as the working fluid operates between the pressure limits of 200 kPa and 1200 kPa. Determine a) the mass fraction of the refrigerant that is in the liquid phase at the inlet of the evaporator, and b) the amount of heat transfer (in kJ/kg) to the refrigerant in the evaporator (??).
There is a vapor compression type refrigeration cycle using the refrigerant HFC 134 a. In the...
There is a vapor compression type refrigeration cycle using the refrigerant HFC 134 a. In the condenser, it is isostatically cooled, the condensation temperature is 50 ° C., and the condenser outlet is the compressed liquid at 45 ° C. In the evaporator, it is isothermally heated, the evaporation temperature is 10 ° C. and the outlet of the evaporator is heated steam at 15 ° C. When the expansion valve performs isenthalpic expansion, and the adiabatic efficiency of the...
An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration...
An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycle is to maintain a space at 30°C while operating its condenser at 1000 kPa. Determine the COP of the system when a temperature difference of 2°C is allowed for the transfer of heat in the evaporator. (Take the required values from saturated refrigerant-134a tables.) The COP of the system is ?
An ice-making machine operates on the ideal-vapor compression cycle using refrigerant-134a. The refrigerant enters the compressor...
An ice-making machine operates on the ideal-vapor compression cycle using refrigerant-134a. The refrigerant enters the compressor as saturated vapor at 40 psia and leaves the condenser as saturated liquid at 80 psia. Water enters the ice machine at 55°F and leaves as ice at 25°F. For an ice production rate of 21 lbm/h, determine the power input to the ice machine (169 Btu of heat needs to be removed from each lbm of water at 55°F to turn it into...
For an ideal vapor-compression heat pump cycle, refrigerant 134a is used to provide 35 kW of...
For an ideal vapor-compression heat pump cycle, refrigerant 134a is used to provide 35 kW of heat to a building. Saturated vapor enters the compressor at 1.6 bar and saturated liquid exits the condenser which operates at 8 bar. What is (a) the mass flow rate of the refrigerant, and (b) the COP?
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 2 bar, and saturated liquid exits the condenser at 10 bar. The isentropic compressor efficiency is 80%. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor power, in kW. (b) the refrigeration capacity, in tons. (c) the coefficient of performance.
value of y is _____4_______. Consider an ideal vapor-compression refrigeration cycle using Freon 410A (see ....
value of y is _____4_______. Consider an ideal vapor-compression refrigeration cycle using Freon 410A (see . https://www.freon.com/en-/media/files/freon/freon-410a-si-thermodynamic-properties.pdf) The pressure in the evaporator is 10y kPa (That is, if y = 3 the evaporator pressure is 30 kPa). and the temperature at the exit of the condenser is 40oC. The mass flow in the system is (0.05 + y/200) kg/s.   (That is, if y =3, then the mass flow is 0.0.065 kg/s). Find the enthalpy at the entrance to the compressor.        ...
An ideal vapor-compression refrigeration cycle is modified to include a counterflow heat exchanger, as shown in...
An ideal vapor-compression refrigeration cycle is modified to include a counterflow heat exchanger, as shown in the figure below. Ammonia leaves the evaporator as saturated vapor at 1 bar and is heated at constant pressure to 5°C before entering the compressor. Following isentropic compression to 18 bar, the refrigerant passes through the condenser, exiting at 40°C, 18 bar. The liquid then passes through the heat exchanger, entering the expansion valve at 18 bar. If the mass flow rate of refrigerant...
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant...
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant at 40 °C leaving the condenser and entering the heat exchanger is used to superheat the saturated vapor refrigerant leaving the evaporator at 7 °C by 8 °C. If the compressor is capable of pumping 5 l/s of vapor refrigerant measured at the inlet to the compressor and the compression processes are considered isentropic in both cases listed below, determine; (a) The refrigerating capacity...
Statement: Selection of compressor and refrigerant for HVAC system that is operating on Vapor Compression Refrigeration...
Statement: Selection of compressor and refrigerant for HVAC system that is operating on Vapor Compression Refrigeration System. The heat load is 120,000 BTU/hr and temperature is to be maintained at space is 50C. Step 1: Select ambient and environmental conditions Step 2: Select refrigerant, preliminary calculations, use of property charts, suction discharge pressure of compressor to achieve required cooling, compressor capacity etc. Step 3: Select compressor (Stage, rpm, displacement, size etc) need detailed solution
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT