Question

In: Electrical Engineering

In a three-phase circuit the balanced delta load of (36 +j54) ohms is fed by impedance...

In a three-phase circuit the balanced delta load of (36 +j54) ohms is fed by impedance conductors (5 +j70) ohms. If the generator voltage is 120 V angle 0° phase A, calculate a) the bc voltage on the load, b) the powers in the conductors, c) the bc voltage of the delta load and d) the power delta on the load.

Solutions

Expert Solution


Related Solutions

A balanced three-phase generator delivers 6.3 kW to a delta-connected load with impedance 13 - j23.4...
A balanced three-phase generator delivers 6.3 kW to a delta-connected load with impedance 13 - j23.4 Ω per phase. The magnitude of the line current ILis:
A balanced three-phase delta-connected load is connected to a balanced three-phase delta-connected source via a transmission...
A balanced three-phase delta-connected load is connected to a balanced three-phase delta-connected source via a transmission line. The line-line voltage for the source is 100∟0° V/phase and the impedance of load is (27 + j18) Ω/phase. The transmission line has an impedance of (1 + j4) Ω/line. a) Draw the complete schematic of the power system showing the location of wattmeters. (Two-Wattmeter system is considered for this problem). Phase “a” could be considered as a reference phase. b) What must...
A three-phase balanced star load No. 1 of (120 +j90) ohms in parallel with another three-phase...
A three-phase balanced star load No. 1 of (120 +j90) ohms in parallel with another three-phase balanced star load No. 2 of (90 +j120) ohms, both are fed by three-phase balanced conductors of 3 ohms resistance and 4 ohms reactance. If the generator is 240 volts, with angle of -150° on phase c and reactance of 1 ohms, determine: a) the current on load N°1 on phase C, b) the terminal voltage of the generator on phase B, c) the...
Three balanced three-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of...
Three balanced three-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of 420+300i Ω/ϕ ; load 2 is Δ-connected with an impedance of 2400-1780i Ω/ϕ ; and load 3 is 170.1+2201i kVA . The loads are fed from a distribution line with an impedance of 2+17i Ω/ϕ . The magnitude of the line-to-neutral voltage at the load end of the line is 23√3 kV. Part A: Calculate the total complex power at the sending end of...
Three balanced 3-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of...
Three balanced 3-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of 400 + j300 ? per phase, load 2 is ?-connected with an impedance of 2400 – j1800 ? per phase, and load 3 is absorbing 172.8 + j2203.2 kVA. The loads are fed from a set of distribution lines with an impedance of 2 + j16 ? per line. The magnitude of the line-to-neutral voltage at the load end of the line is 24?3...
A 3phase,400V sourcesupplies a delta connected load having phase impedances Zab=25? 0º ohms, Zbc=25?30º ohms, and...
A 3phase,400V sourcesupplies a delta connected load having phase impedances Zab=25? 0º ohms, Zbc=25?30º ohms, and Zca=25?-30º ohms. The magnitude of all the phase currents is ____ A.
An unbalanced wye connected wye connected load of three phase resistances with Ra=60 ohms, Rb=40 ohms...
An unbalanced wye connected wye connected load of three phase resistances with Ra=60 ohms, Rb=40 ohms and Rc=80 ohms is connected to a 440V, negative sequence, balanced 3 phase, 3 wire supply. Calculate the complex power using the method of symmetrical components. Please show all steps and clearly show all answers.
An unbalanced three-phase wye-connected and grounded load is connected to a balanced three-phase four-wire source. The...
An unbalanced three-phase wye-connected and grounded load is connected to a balanced three-phase four-wire source. The load impedances are Za = 14+j3 Ω , Zb = 5-j24Ω and Zc =1+j14 Ω  and the phase a line voltage has an effective value of 18 Kv: use line-to-neutral voltage of phase A as a reference. Find the line and neutral current, also find the reactive power delivered to load and power factor.
The single-phase equivalent-circuit parameters for a three-phase induction motor in ohms-per-phase are R1=0.17 R2=0.24 X1=1.05 X2=0.87...
The single-phase equivalent-circuit parameters for a three-phase induction motor in ohms-per-phase are R1=0.17 R2=0.24 X1=1.05 X2=0.87 Xm=82.1 Rc=435 For a slip of 5 percent, and a terminal voltage of 460 V, line to line, calculate: A) Calculate the motor phase current and input real and reactive power. B) Calculate the mechanical output power and the power dissipated in the rotor. You might assume that the motor friction and windage losses are 270W C) Calculate the motor core loss and the...
A balanced three-phase delta-connected source has a line veltage of 120 V. It is connected to...
A balanced three-phase delta-connected source has a line veltage of 120 V. It is connected to a load via a three-wire transmission line. The per-phase impedance of the delta-connected load is 30 + 120j (2. The impedance of each wire of the transmission line is 2 + 4j 2. How much power is dissipated by the load? By the transmission line? What is the power factor of the load? What is the overall power factor?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT