Question

In: Electrical Engineering

A balanced three-phase delta-connected source has a line veltage of 120 V. It is connected to...

A balanced three-phase delta-connected source has a line veltage of 120 V. It is connected to a load via a three-wire transmission line. The per-phase impedance of the delta-connected load is 30 + 120j (2. The impedance of each wire of the transmission line is 2 + 4j 2. How much power is dissipated by the load? By the transmission line? What is the power factor of the load? What is the overall power factor?

Solutions

Expert Solution


Related Solutions

A balanced three-phase delta-connected load is connected to a balanced three-phase delta-connected source via a transmission...
A balanced three-phase delta-connected load is connected to a balanced three-phase delta-connected source via a transmission line. The line-line voltage for the source is 100∟0° V/phase and the impedance of load is (27 + j18) Ω/phase. The transmission line has an impedance of (1 + j4) Ω/line. a) Draw the complete schematic of the power system showing the location of wattmeters. (Two-Wattmeter system is considered for this problem). Phase “a” could be considered as a reference phase. b) What must...
A three-phase motor is delta connected to a 415 V, 60 Hz line. If the line...
A three-phase motor is delta connected to a 415 V, 60 Hz line. If the line current is 25 A and the motor power factor is 0.75, how much power is consumed by the motor (a) Determine the size of the bank of three capacitors to improve the power factor of the motor to 0.95. The capacitors are delta connected. (b) If two of the motors work together, what is the size of capacitors to correct the power factor to...
A balanced positive-sequence wye-connected 60-Hz three-phase source has line-to-line voltages of VL = 440 V rms....
A balanced positive-sequence wye-connected 60-Hz three-phase source has line-to-line voltages of VL = 440 V rms. This source is connected to a balanced wye-connected load. Each phase of the load consists of a 0.5-H inductance in series with a 50-? resistance. Assume that the phase of Van is zero. A) Find the line-to-neutral voltage phasor Van. Enter your answer using polar notation. Express argument in degrees. B) Find the line-to-neutral voltage phasor Vbn. Enter your answer using polar notation. Express...
An unbalanced three-phase wye-connected and grounded load is connected to a balanced three-phase four-wire source. The...
An unbalanced three-phase wye-connected and grounded load is connected to a balanced three-phase four-wire source. The load impedances are Za = 14+j3 Ω , Zb = 5-j24Ω and Zc =1+j14 Ω  and the phase a line voltage has an effective value of 18 Kv: use line-to-neutral voltage of phase A as a reference. Find the line and neutral current, also find the reactive power delivered to load and power factor.
A 280-V, 3Ø AC power system, Y-connected three-phase generator connected through a three-phase transmission line to...
A 280-V, 3Ø AC power system, Y-connected three-phase generator connected through a three-phase transmission line to a Y-connected load. The transmission line has an impedance of (0.02+j0.4) Ω/phase, and the load has an impedance of (4+j3) Ω per phase. Determine the;(a)line current (IL) at the load [2Marks] (b)line and phase voltage of the load[2 Marks](c)active power, reactive and apparent power [2 Marks](d) power factor and specify whether it is lagging or leading. [4 Marks]
A balanced three-phase generator delivers 6.3 kW to a delta-connected load with impedance 13 - j23.4...
A balanced three-phase generator delivers 6.3 kW to a delta-connected load with impedance 13 - j23.4 Ω per phase. The magnitude of the line current ILis:
Two balanced three phase loads are connected to a busbar with 10kV line voltage at 50Hz....
Two balanced three phase loads are connected to a busbar with 10kV line voltage at 50Hz. Load A is 168kVA at cosφ = 0,85 (lagging). Load B is connected in Y and draws a complex phase current ?? = 4,79∠ − 24,5°. Calculate the total active, reactive and apparent power at the busbar. Calculate the combined cosφ at the busbar. A third balanced load is connected to the busbar.The total power at the busbar is now 288kW, cosφ = 0,87...
Three equal impedances, 60 + j30 Ω each, are delta-connected to a 230-V rms, three-phase circuit....
Three equal impedances, 60 + j30 Ω each, are delta-connected to a 230-V rms, three-phase circuit. Another three equal impedances, 40 + j10 Ω each, are wye-connected across the same circuit at the same points. Determine: (a) the line current (b) the total complex power supplied to the two loads (c) the power factor of the two loads combined
Three balanced three-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of...
Three balanced three-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of 420+300i Ω/ϕ ; load 2 is Δ-connected with an impedance of 2400-1780i Ω/ϕ ; and load 3 is 170.1+2201i kVA . The loads are fed from a distribution line with an impedance of 2+17i Ω/ϕ . The magnitude of the line-to-neutral voltage at the load end of the line is 23√3 kV. Part A: Calculate the total complex power at the sending end of...
A 3 phase 460 V, 60 Hz, 4 pole, delta connected induction motor has the following...
A 3 phase 460 V, 60 Hz, 4 pole, delta connected induction motor has the following equivalent circuit parameters. Rs = 0.42 Ω, Rr = 0.23 Ω, Xs = Xr = 0.82 Ω. Xm = 22 Ω. The no load loss = 60 W and may be assumed constant. The rotor speed is 1750 rpm. Use the approximate equivalent circuit ( i.e. the Xm branch is at the very left of the circuit) determine the following a. the synchronous speed...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT