Question

In: Statistics and Probability

Consider the following time series. Quarter Year 1 Year 2 Year 3 1 71 68 62...

Consider the following time series.

Quarter Year 1 Year 2 Year 3
1 71 68 62
2 49 41 51
3 58 60 53
4 83 85 72

b. Use the following dummy variables to develop an estimated regression equation to account for seasonal effects in the data: Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise. Enter negative values as negative numbers.

Value = + Qtr1 + Qtr2 + Qtr3

c. Compute the quarterly forecasts for next year.

Quarter 1 forecast
Quarter 2 forecast
Quarter 3 forecast
Quarter 4 forecast


Solutions

Expert Solution

(b) Here we are taking dummy variables in the following way

Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise.

Now i am using the regression formula of excel.

First go to data analysis tool. Then put this the demand column in dependent variable. THen , we will create three column like given below and put in independent variable tab.

Quarter 1 Quarter 2 Quarter 3 Demand
1 0 0 71
0 1 0 49
0 0 1 58
0 0 0 83
1 0 0 68
0 1 0 41
0 0 1 60
0 0 0 85
1 0 0 62
0 1 0 51
0 0 1 53
0 0 0 72

Regression output is

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.943226
R Square 0.889676
Adjusted R Square 0.848304
Standard Error 5.267827
Observations 12
ANOVA
df SS MS F
Regression 3 1790.25 596.75 21.5045
Residual 8 222 27.75
Total 11 2012.25
Coefficients Standard Error t Stat P-value
Intercept 80 3.041381 26.30384 4.69E-09
Quarter 1 -13 4.301163 -3.02244 0.016498
Quarter 2 -33 4.301163 -7.67234 5.89E-05
Quarter 3 -23 4.301163 -5.34739 0.000688

so here the regression equation is

Demand = 80 - 13 * Qtr1 - 33 * Qtr 2 - 23 * Qtr 3

c. Compute the quarterly forecasts for next year.

Quarter 1 forecast = 80 - 13 67
Quarter 2 forecast = 80 - 33 47
Quarter 3 forecast = 80 - 23 = 57 57
Quarter 4 forecast = 80

Quart 1 forecast = 67

Quart 2 forecast = 47

Quart 3 forecast = 57

Quart 4 forecast = 80


Related Solutions

Consider the following time series: Quarter Year 1 Year 2 Year 3 1 74 71 65...
Consider the following time series: Quarter Year 1 Year 2 Year 3 1 74 71 65 2 44 36 46 3 61 63 56 4 78 81 72 Use a multiple linear regression model with dummy variables as follows to develop an equation to account for seasonal effects in the data: Qtr1 = 1 if quarter 1, 0 otherwise; Qtr2 = 1 if quarter 2, 0 otherwise; Qtr3 = 1 if quarter 3, 0 otherwise. For subtractive or negative numbers...
Consider the following time series data. Quarter Year 1 Year 2 Year 3 1 2 3...
Consider the following time series data. Quarter Year 1 Year 2 Year 3 1 2 3 4 4 2 3 5 6 3 5 7 7 6 6 8 Graph this data series (use the X-Y scatter/chart tool in Excel for this plot). What type of pattern(s) exists in the data? Does the graph suggest that these data exhibit seasonality? What is the length of the season in this particular case? Determine the seasonal factors for each quarter using METHOD...
Consider the following time series data. Quarter Year 1 Year 2 Year 3 1 3 6...
Consider the following time series data. Quarter Year 1 Year 2 Year 3 1 3 6 7 2 4 1 8 3 1 7 5 4 5 7 8 a. Which of the following is a time series plot? - Select your answer -time series plot #1time series plot #2time series plot #3Item 1 What type of pattern exists in the data? - Select your answer -upward linear trendnonlinear trend and a seasonal patternlinear trend and a seasonal patternslight curvaturedownward...
Consider the following time series data. Quarter Year 1 Year 2 Year 3 1 3 6...
Consider the following time series data. Quarter Year 1 Year 2 Year 3 1 3 6 8 2 2 4 8 3 4 7 9 4 6 9 11 . (a)  Use a multiple regression model with dummy variables as follows to develop an equation to account for seasonal effects in the data. Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise. If required, round your...
Consider the following time series data. Quarter Year 1 Year 2 Year 3 1 2 4...
Consider the following time series data. Quarter Year 1 Year 2 Year 3 1 2 4 5 2 4 5 8 3 1 3 4 4 7 9 10 (a) Choose the correct time series plot. (i) (ii) (iii) (iv) - Select your answer -Plot (i)Plot (ii)Plot (iii)Plot (iv)Item 1 What type of pattern exists in the data? - Select your answer -Positive trend pattern, no seasonalityHorizontal pattern, no seasonalityNegative trend pattern, no seasonalityPositive trend pattern, with seasonalityHorizontal pattern, with...
Consider the following time series data. Quarter Year 1 Year 2 Year 3 1 2 5...
Consider the following time series data. Quarter Year 1 Year 2 Year 3 1 2 5 7 2 0 2 6 3 5 8 10 4 5 8 10 b) Use a multiple regression model with dummy variables as follows to develop an equation to account for seasonal effects in the data. Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise. If required, round your...
Consider the following time series data. Quarter Year 1 Year 2 Year 3 1 2 5...
Consider the following time series data. Quarter Year 1 Year 2 Year 3 1 2 5 7 2 0 2 6 3 5 8 10 4 5 8 10 (b) Use a multiple regression model with dummy variables as follows to develop an equation to account for seasonal effects in the data. Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise. If required, round your...
Consider the following time series. Quarter Year 1 Year 2 Year 3 1 70 67 61...
Consider the following time series. Quarter Year 1 Year 2 Year 3 1 70 67 61 2 48 40 50 3 58 60 53 4 79 82 73 (b)Use the following dummy variables to develop an estimated regression equation to account for seasonal effects in the data: x1 = 1 if quarter 1, 0 otherwise; x2 = 1 if quarter 2, 0 otherwise; x3 = 1 if quarter 3, 0 otherwise. = (c)Compute the quarterly forecasts for next year. quarter...
Consider the following time series data. Quarter Year 1 Year 2 Year 3 1 5 8...
Consider the following time series data. Quarter Year 1 Year 2 Year 3 1 5 8 10 2 2 4 8 3 1 4 6 4 3 6 8 A.) Use a multiple regression model with dummy variables as follows to develop an equation to account for seasonal effects in the data. Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise. If required, round your...
Consider the following time series: Quarter Year 1 Year 2 Year 3 1 66 63 57...
Consider the following time series: Quarter Year 1 Year 2 Year 3 1 66 63 57 2 48 40 50 3 59 61 54 4 73 76 67 Use a multiple linear regression model with dummy variables as follows to develop an equation to account for seasonal effects in the data: Qtr1 = 1 if quarter 1, 0 otherwise; Qtr2 = 1 if quarter 2, 0 otherwise; Qtr3 = 1 if quarter 3, 0 otherwise. For subtractive or negative numbers...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT