In: Statistics and Probability
Consider the following time series data.
Quarter | Year 1 | Year 2 | Year 3 |
1 | 3 | 6 | 8 |
2 | 2 | 4 | 8 |
3 | 4 | 7 | 9 |
4 | 6 | 9 | 11 |
.
(a) Use a multiple regression model with dummy variables as follows to develop an equation to account for seasonal effects in the data. Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise.
If required, round your answers to three decimal places. For subtractive or negative numbers use a minus sign even if there is a + sign before the blank. (Example: -300) If the constant is "1" it must be entered in the box. Do not round intermediate calculation.
ŷ = ____ + ____Qtr1 + ____ Qtr2 + ___ Qtr3 |
.
(b) Use a multiple regression model to develop an equation to account for trend and seasonal effects in the data. Use the dummy variables you developed in part (b) to capture seasonal effects and create a variable t such that t = 1 for Quarter 1 in Year 1, t = 2 for Quarter 2 in Year 1,… t = 12 for Quarter 4 in Year 3.
If required, round your answers to three decimal places. For subtractive or negative numbers use a minus sign even if there is a + sign before the blank. (Example: -300)
ŷ =__ + __Qtr1 + ___Qtr2 + ___Qtr3 + ____t |
.
(c) Is the model you developed in part (b) or the model you developed in part (d) more effective?
If required, round your intermediate calculations and final answer to three decimal places.
Which is better model developed in part (B) or (D) Justify your answer with a 2 sentence response |
(a) y = 8.667 - 3*Qtr 1 - 4*Qtr 2 - 2*Qtr 3
(b) y = 3.417 - 1.031*Qtr 1 - 2.688*Qtr 2 - 1.344*Qtr 3 + 0.656*t
(c)
Model developed in part (b) | Model developed in part (d) | |
MSE | 7.083 | 0.220 |
The model developed in part (d) is better.
yt | Qtr 1 | Qtr 2 | Qtr 3 | t | ||
3 | 1 | 0 | 0 | 1 | ||
2 | 0 | 1 | 0 | 2 | ||
4 | 0 | 0 | 1 | 3 | ||
6 | 0 | 0 | 0 | 4 | ||
6 | 1 | 0 | 0 | 5 | ||
4 | 0 | 1 | 0 | 6 | ||
7 | 0 | 0 | 1 | 7 | ||
9 | 0 | 0 | 0 | 8 | ||
8 | 1 | 0 | 0 | 9 | ||
8 | 0 | 1 | 0 | 10 | ||
9 | 0 | 0 | 1 | 11 | ||
11 | 0 | 0 | 0 | 12 | ||
R² | 0.317 | |||||
Adjusted R² | 0.060 | |||||
R | 0.563 | |||||
Std. Error | 2.661 | |||||
n | 12 | |||||
k | 3 | |||||
Dep. Var. | yt | |||||
ANOVA table | ||||||
Source | SS | df | MS | F | p-value | |
Regression | 26.2500 | 3 | 8.7500 | 1.24 | .3589 | |
Residual | 56.6667 | 8 | 7.0833 | |||
Total | 82.9167 | 11 | ||||
Regression output | confidence interval | |||||
variables | coefficients | std. error | t (df=8) | p-value | 95% lower | 95% upper |
Intercept | 8.667 | |||||
Qtr 1 | -3.000 | 2.1731 | -1.381 | .2048 | -8.0111 | 2.0111 |
Qtr 2 | -4.000 | 2.1731 | -1.841 | .1029 | -9.0111 | 1.0111 |
Qtr 3 | -2.000 | 2.1731 | -0.920 | .3843 | -7.0111 | 3.0111 |
R² | 0.981 | |||||
Adjusted R² | 0.971 | |||||
R | 0.991 | |||||
Std. Error | 0.469 | |||||
n | 12 | |||||
k | 4 | |||||
Dep. Var. | yt | |||||
ANOVA table | ||||||
Source | SS | df | MS | F | p-value | |
Regression | 81.3750 | 4 | 20.3438 | 92.37 | 3.89E-06 | |
Residual | 1.5417 | 7 | 0.2202 | |||
Total | 82.9167 | 11 | ||||
Regression output | confidence interval | |||||
variables | coefficients | std. error | t (df=7) | p-value | 95% lower | 95% upper |
Intercept | 3.417 | |||||
Qtr 1 | -1.031 | 0.4029 | -2.560 | .0376 | -1.9839 | -0.0786 |
Qtr 2 | -2.688 | 0.3921 | -6.855 | .0002 | -3.6146 | -1.7604 |
Qtr 3 | -1.344 | 0.3854 | -3.486 | .0102 | -2.2551 | -0.4324 |
t | 0.656 | 0.0415 | 15.821 | 9.77E-07 | 0.5582 | 0.7543 |