In: Statistics and Probability
Consider the following time series data.
Quarter | Year 1 | Year 2 | Year 3 |
1 | 5 | 8 | 10 |
2 | 2 | 4 | 8 |
3 | 1 | 4 | 6 |
4 | 3 | 6 | 8 |
A.) Use a multiple regression model with dummy variables as
follows to develop an equation to account for seasonal effects in
the data. Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter
2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise. If required,
round your answers to three decimal places. For subtractive or
negative numbers use a minus sign even if there is a + sign before
the blank. (Example: -300) If the constant is "1" it must be
entered in the box. Do not round intermediate calculation.
|
B.)Use a multiple regression model to develop an equation to account for trend and seasonal effects in the data. Use the dummy variables you developed in part (a) to capture seasonal effects and create a variable t such that t = 1 for Quarter 1 in Year 1, t = 2 for Quarter 2 in Year 1,… t = 12 for Quarter 4 in Year 3. | |
If required, round your answers to three decimal places. For
subtractive or negative numbers use a minus sign even if there is a
+ sign before the blank. (Example: -300)
|
C.) Is the model you developed in part (a) or the model you
developed in part (b) more effective? If required, round your
intermediate calculations and final answer to three decimal places.
|
D.) Justify your answer
Actual Demand y | t | Q1 | Q2 | Q3 |
5 | 1 | 1 | 0 | 0 |
2 | 2 | 0 | 1 | 0 |
1 | 3 | 0 | 0 | 1 |
3 | 4 | 0 | 0 | 0 |
8 | 5 | 1 | 0 | 0 |
4 | 6 | 0 | 1 | 0 |
4 | 7 | 0 | 0 | 1 |
6 | 8 | 0 | 0 | 0 |
10 | 9 | 1 | 0 | 0 |
8 | 10 | 0 | 1 | 0 |
6 | 11 | 0 | 0 | 1 |
8 | 12 | 0 | 0 | 0 |
a)
SUMMARY OUTPUT | |||||
Regression Statistics | |||||
Multiple R | 0.562657013 | ||||
R Square | 0.316582915 | ||||
Adjusted R Square | 0.060301508 | ||||
Standard Error | 2.661453237 | ||||
Observations | 12 | ||||
ANOVA | |||||
df | SS | MS | F | Significance F | |
Regression | 3 | 26.25 | 8.75 | 1.235294118 | 0.358900532 |
Residual | 8 | 56.66666667 | 7.083333333 | ||
Total | 11 | 82.91666667 | |||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | |
Intercept | 5.666666667 | 1.536590743 | 3.687817783 | 0.006149497 | 2.123282059 |
Q1 | 2 | 2.173067468 | 0.920357987 | 0.384298458 | -3.011102568 |
Q2 | -1 | 2.173067468 | -0.460178993 | 0.657636986 | -6.011102568 |
Q3 | -2 | 2.173067468 | -0.920357987 | 0.384298458 | -7.011102568 |
y^ = 5.667 + 2Q1 - 1 Q2 - 2Q3
b)
SUMMARY OUTPUT | |||||
Regression Statistics | |||||
Multiple R | 0.990659899 | ||||
R Square | 0.981407035 | ||||
Adjusted R Square | 0.970782484 | ||||
Standard Error | 0.469295318 | ||||
Observations | 12 | ||||
ANOVA | |||||
df | SS | MS | F | Significance F | |
Regression | 4 | 81.375 | 20.34375 | 92.37162162 | 3.88693E-06 |
Residual | 7 | 1.541666667 | 0.220238 | ||
Total | 11 | 82.91666667 | |||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | |
Intercept | 0.417 | 0.428406053 | 0.972598 | 0.363154591 | -0.596352675 |
t | 0.656 | 0.041480238 | 15.82079 | 9.77012E-07 | 0.558164824 |
Q1 | 3.969 | 0.402878254 | 9.850991 | 2.36179E-05 | 3.016094309 |
Q2 | 0.313 | 0.392055911 | 0.79708 | 0.451588999 | -0.614564915 |
Q3 | -1.344 | 0.385416667 | -3.48649 | 0.010176777 | -2.255115597 |
y^ = 0.417 + 3.969 Q1 + 0.313 Q2 -1.344 Q3 + 0.656t
c)
using 3 quarter | error^2 | using 3 q amd t | error^2 | ||
7.667 | 7.112889 | 5.042 | 0.001764 | ||
4.667 | 7.112889 | 2.042 | 0.001764 | ||
3.667 | 7.112889 | 1.041 | 0.001681 | ||
5.667 | 7.112889 | 3.041 | 0.001681 | ||
7.667 | 0.110889 | 7.666 | 0.111556 | ||
4.667 | 0.444889 | 4.666 | 0.443556 | ||
3.667 | 0.110889 | 3.665 | 0.112225 | ||
5.667 | 0.110889 | 5.665 | 0.112225 | ||
7.667 | 5.442889 | 10.29 | 0.0841 | ||
4.667 | 11.10889 | 7.29 | 0.5041 | ||
3.667 | 5.442889 | 6.289 | 0.083521 | ||
5.667 | 5.442889 | 8.289 | 0.083521 | ||
MSE | 4.722222 | MSE | 0.128475 |
MSE for a) part = 4.722
MSE for b) part = 0.128
D)
we choose model 2
as its MSE is lower
Please rate