In: Accounting
Could you please recommend some thesis statements, Research questions, problem statements for my MBA Thesis,
Topic: Block chain Technology
Starting with various types of cryptocurrencies
Her are my view point about the topic of Blockchain and Cryptocurrency.
What is Blockchain?
If this technology is so complex, why call it “blockchain?” At its most basic level, blockchain is literally just a chain of blocks, but not in the traditional sense of those words. When we say the words “block” and “chain” in this context, we are actually talking about digital information (the “block”) stored in a public database (the “chain”).
“Blocks” on the blockchain are made up of digital pieces of information. Specifically, they have three parts:
While the block in the example above is being used to store a single purchase from Amazon, the reality is a little different. A single block on the Bitcoin blockchain can actually store up to 1 MB of data. Depending on the size of the transactions, that means a single block can house a few thousand transactions under one roof.
How Blockchain Works
When a block stores new data it is added to the blockchain. Blockchain, as its name suggests, consists of multiple blocks strung together. In order for a block to be added to the blockchain, however, four things must happen:
When that new block is added to the blockchain, it becomes publicly available for anyone to view—even you. If you take a look at Bitcoin’s blockchain, you will see that you have access to transaction data, along with information about when (“Time”), where (“Height”), and by who (“Relayed By”) the block was added to the blockchain.
Blockchain vs. Bitcoin
The goal of blockchain is to allow digital information to be recorded and distributed, but not edited. That concept can be difficult to wrap our heads around without seeing the technology in action, so let’s take a look at how the earliest application of blockchain technology actually works.
Blockchain technology was first outlined in 1991 by Stuart Haber and W. Scott Stornetta, two researchers who wanted to implement a system where document timestamps could not be tampered with. But it wasn’t until almost two decades later, with the launch of Bitcoin in January 2009, that blockchain had its first real-world application.
The Bitcoin protocol is built on the blockchain. In a research paper introducing the digital currency, Bitcoin’s pseudonymous creator Satoshi Nakamoto referred to it as “a new electronic cash system that’s fully peer-to-peer, with no trusted third party.”
Here’s how it works.
You have all these people, all over the world, who have bitcoin. There are likely many millions of people around the world who own at least a portion of a bitcoin. Let’s say one of those millions of people wants to spend their bitcoin on groceries. This is where the blockchain comes in.
When it comes to printed money, the use of printed currency is regulated and verified by a central authority, usually a bank or government—but Bitcoin is not controlled by anyone. Instead, transactions made in bitcoin are verified by a network of computers. This is what is meant by the Bitcoin network and blockchain being "decentralized."
When one person pays another for goods using bitcoin, computers on the Bitcoin network race to verify the transaction. In order to do so, users run a program on their computers and try to solve a complex mathematical problem, called a “hash.” When a computer solves the problem by “hashing” a block, its algorithmic work will have also verified the block’s transactions. As we described above, the completed transaction is publicly recorded and stored as a block on the blockchain, at which point it becomes unalterable. In the case of Bitcoin, and most other blockchains, computers that successfully verify blocks are rewarded for their labor with cryptocurrency. This is commonly referred to as "mining."
Although transactions are publicly recorded on the blockchain, user data is not—or, at least not in full. In order to conduct transactions on the Bitcoin network, participants must run a program called a “wallet.” Each wallet consists of two unique and distinct cryptographic keys: a public key and a private key. The public key is the location where transactions are deposited to and withdrawn from. This is also the key that appears on the blockchain ledger as the user’s digital signature.
Even if a user receives a payment in bitcoins to their public key, they will not be able to withdraw them with the private counterpart. A user’s public key is a shortened version of their private key, created through a complicated mathematical algorithm. However, due to the complexity of this equation, it is almost impossible to reverse the process and generate a private key from a public key. For this reason, blockchain technology is considered confidential.
Blockchain's Practical Application
Blocks on the blockchain store data about monetary transactions—we’ve got that out of the way. But it turns out that blockchain is actually a pretty reliable way of storing data about other types of transactions, as well. In fact, blockchain technology can be used to store data about property exchanges, stops in a supply chain, and even votes for a candidate.
Professional services network Deloitte recently surveyed 1,000 companies across seven countries about integrating blockchain into their business operations. Their survey found that 34% already had a blockchain system in production today, while another 41% expected to deploy a blockchain application within the next 12 months. In addition, nearly 40% of the surveyed companies reported they would invest $5 million or more in blockchain in the coming year. Here are some of the most popular applications of blockchain being explored today.
What Is a Cryptocurrency?
A cryptocurrency is a digital or virtual currency that is secured by cryptography, which makes it nearly impossible to counterfeit or double-spend. Many cryptocurrencies are decentralized networks based on blockchain technology—a distributed ledger enforced by a disparate network of computers. A defining feature of cryptocurrencies is that they are generally not issued by any central authority, rendering them theoretically immune to government interference or manipulation.
KEY TAKEAWAYS
Understanding Cryptocurrencies
Cryptocurrencies are systems that allow for the secure payments online which are denominated in terms of virtual "tokens," which are represented by ledger entries internal to the system. "Crypto" refers to the various encryption algorithms and cryptographic techniques that safeguard these entries, such as elliptical curve encryption, public-private key pairs, and hashing functions.
Types of Cryptocurrency
The first blockchain-based cryptocurrency was Bitcoin, which still remains the most popular and most valuable. Today, there are thousands of alternate cryptocurrencies with various functions and specifications. Some of these are clones or forks of Bitcoin, while others are new currencies that were built from scratch.
Bitcoin was launched in 2009 by an individual or group known by the pseudonym "Satoshi Nakamoto."1 As of Nov. 2019, there were over 18 million bitcoins in circulation with a total market value of around $146 billion.2
Some of the competing cryptocurrencies spawned by Bitcoin’s success, known as "altcoins," include Litecoin, Peercoin, and Namecoin, as well as Ethereum, Cardano, and EOS. Today, the aggregate value of all the cryptocurrencies in existence is around $214 billion—Bitcoin currently represents more than 68% of the total value.3
Some of the cryptography used in cryptocurrency today was originally developed for military applications. At one point, the government wanted to put controls on cryptography similar to the legal restrictions on weapons, but the right for civilians to use cryptography was secured on grounds of freedom of speech.
Special Considerations
Central to the appeal and functionality of Bitcoin and other cryptocurrencies is blockchain technology, which is used to keep an online ledger of all the transactions that have ever been conducted, thus providing a data structure for this ledger that is quite secure and is shared and agreed upon by the entire network of individual node, or computer maintaining a copy of the ledger. Every new block generated must be verified by each node before being confirmed, making it almost impossible to forge transaction histories.
Many experts see blockchain technology as having serious potential for uses like online voting and crowdfunding, and major financial institutions such as JPMorgan Chase (JPM) see the potential to lower transaction costs by streamlining payment processing.4 However, because cryptocurrencies are virtual and are not stored on a central database, a digital cryptocurrency balance can be wiped out by the loss or destruction of a hard drive if a backup copy of the private key does not exist. At the same time, there is no central authority, government, or corporation that has access to your funds or your personal information.
Advantages and Disadvantages of Cryptocurrency
Advantages
Cryptocurrencies hold the promise of making it easier to transfer funds directly between two parties, without the need for a trusted third party like a bank or credit card company. These transfers are instead secured by the use of public keys and private keys and different forms of incentive systems, like Proof of Work or Proof of Stake.
In modern cryptocurrency systems, a user's "wallet," or account address, has a public key, while the private key is known only to the owner and is used to sign transactions. Fund transfers are completed with minimal processing fees, allowing users to avoid the steep fees charged by banks and financial institutions for wire transfers.
Disadvantages
The semi-anonymous nature of cryptocurrency transactions makes them well-suited for a host of illegal activities, such as money laundering and tax evasion. However, cryptocurrency advocates often highly value their anonymity, citing benefits of privacy like protection for whistleblowers or activists living under repressive governments. Some cryptocurrencies are more private than others.
Bitcoin, for instance, is a relatively poor choice for conducting illegal business online, since the forensic analysis of the Bitcoin blockchain has helped authorities to arrest and prosecute criminals. More privacy-oriented coins do exist, however, such as Dash, Monero, or ZCash, which are far more difficult to trace.
Criticism of Cryptocurrency
Since market prices for cryptocurrencies are based on supply and demand, the rate at which a cryptocurrency can be exchanged for another currency can fluctuate widely, since the design of many cryptocurrencies ensures a high degree of scarcity.
Bitcoin has experienced some rapid surges and collapses in value, climbing as high as $19,000 per Bitcoin in Dec. of 2017 before dropping to around $7,000 in the following months.2 Cryptocurrencies are thus considered by some economists to be a short-lived fad or speculative bubble.
There is concern that cryptocurrencies like Bitcoin are not rooted in any material goods. Some research, however, has identified that the cost of producing a Bitcoin, which requires an increasingly large amount of energy, is directly related to its market price.
Cryptocurrency blockchains are highly secure, but other aspects of a cryptocurrency ecosystem, including exchanges and wallets, are not immune to the threat of hacking. In Bitcoin's 10-year history, several online exchanges have been the subject of hacking and theft, sometimes with millions of dollars worth of "coins" stolen.5
Nonetheless, many observers see potential advantages in cryptocurrencies, like the possibility of preserving value against inflation and facilitating exchange while being more easy to transport and divide than precious metals and existing outside the influence of central banks and governments.
Use in Cryptocurrency
Blockchain forms the bedrock for cryptocurrencies like Bitcoin. As we explored earlier, currencies like the U.S. dollar are regulated and verified by a central authority, usually a bank or government. Under the central authority system, a user’s data and currency are technically at the whim of their bank or government. If a user’s bank collapses or they live in a country with an unstable government, the value of their currency may be at risk. These are the worries out of which Bitcoin was borne.
By spreading its operations across a network of computers, blockchain allows Bitcoin and other cryptocurrencies to operate without the need for a central authority. This not only reduces risk but also eliminates many of the processing and transaction fees. It also gives those in countries with unstable currencies a more stable currency with more applications and a wider network of individuals and institutions they can do business with, both domestically and internationally (at least, this is the goal.)