Question

In: Statistics and Probability

Let z denote a variable that has a standard normal distribution. Determine the value z* to...

Let z denote a variable that has a standard normal distribution. Determine the value z* to satisfy the following conditions. (Round all answers to two decimal places.)

(a) P(z < z*) = 0.0244
z* =   

(b) P(z < z*) = 0.0097
z* =  

(c) P(z < z*) = 0.0484
z* =  

(d) P(z > z*) = 0.0208
z* =  

(e) P(z > z*) = 0.0097
z* =  

(f) P(z > z* or z < −z*) = 0.2043
z* =


Solutions

Expert Solution

You can get these numbers on the z-score table.

(a) P(z < z*) = 0.0244
z* = -1.97033

(b) P(z < z*) = 0.0097
z* = -2.33775

(c) P(z < z*) = 0.0484
z* = -1.66057

(d) P(z > z*) = 0.0208
z* = 2.0375

(e) P(z > z*) = 0.0097
z* = 2.33775

P(z > z* or z < −z*) = 0.2043
z* = 1.2694


Related Solutions

Let Z denote a random variable with a standard normal distribution. Evaluate: Pr {-0.42 < Z...
Let Z denote a random variable with a standard normal distribution. Evaluate: Pr {-0.42 < Z < 1.67} 0.3212 0.3372 0.3401 0.6153 0.9525
Let z denote a random variable having a normal distribution with ? = 0 and ?...
Let z denote a random variable having a normal distribution with ? = 0 and ? = 1. Determine each of the probabilities below. (Round all answers to four decimal places.) (a) P(z < 0.3) =   (b) P(z < -0.3) =   (c) P(0.40 < z < 0.85) =   (d) P(-0.85 < z < -0.40) =   (e) P(-0.40 < z < 0.85) =   (f) P(z > -1.26) =   (g) P(z < -1.5 or z > 2.50) =
Let z denote a random variable having a normal distribution with μ = 0 and σ...
Let z denote a random variable having a normal distribution with μ = 0 and σ = 1. Determine each of the probabilities below. (Round all answers to four decimal places.) (a) P(z < 0.2) =   (b) P(z < -0.2) =   (c) P(0.40 < z < 0.86) =   (d) P(-0.86 < z < -0.40) =   (e) P(-0.40 < z < 0.86) =   (f) P(z > -1.24) =   (g) P(z < -1.5 or z > 2.50) =
Let z denote a random variable having a normal distribution with μ = 0 and σ...
Let z denote a random variable having a normal distribution with μ = 0 and σ = 1. Determine each of the following probabilities. (Round all answers to four decimal places.) (a) P(z < 0.1) = (b) P(z < −0.1) = (c) P(0.40 < z < 0.85) = (d) P(−0.85 < z < −0.40) = (e) P(−0.40 < z < 0.85) = (f) P(z > −1.25) = (g) P(z < −1.5 or z > 2.50) = Let z denote a...
1A. Let z denote a random variable having a normal distribution with μ = 0 and...
1A. Let z denote a random variable having a normal distribution with μ = 0 and σ = 1. Determine each of the probabilities below. (Round all answers to four decimal places.) (a) P(z < 0.1) = (b) P(z < -0.1) = (c) P(0.40 < z < 0.84) = (d) P(-0.84 < z < -0.40) = (e) P(-0.40 < z < 0.84) = (f) P(z > -1.26) = (g) P(z < -1.49 or z > 2.50) = 1B. Find the...
Let z be a random variable with a standard normal distribution. Find “a” such that P(|Z|...
Let z be a random variable with a standard normal distribution. Find “a” such that P(|Z| <A)= 0.95 This is what I have: P(-A<Z<A) = 0.95 -A = -1.96 How do I use the symmetric property of normal distribution to make A = 1.96? My answer at the moment is P(|z|< (-1.96) = 0.95
Let z be a random variable with a standard normal distribution. Find P(0 ≤ z ≤...
Let z be a random variable with a standard normal distribution. Find P(0 ≤ z ≤ 0.46), and shade the corresponding area under the standard normal curve. (Use 4 decimal places.)
Question 3 options: | | Let Z denote a standard normal random variable. Find the probability...
Question 3 options: | | Let Z denote a standard normal random variable. Find the probability P(Z < 0.81)? The area to the LEFT of 0.81? ---------------------------------------- Enter in format X.XX rounding UP so one-half (1/2) is 0.50 and two-thirds (2/3) is 0.67 with rounding. Enter -1.376 as -1.38 with rounding. NOTE: DO NOT ENTER A PERCENTAGE (%). | | Let Z denote a standard normal random variable. Find the probability P(Z > -1.29)? The area to the RIGHT of...
Let the random variable Z follow a standard normal distribution, and let Z1 be a possible...
Let the random variable Z follow a standard normal distribution, and let Z1 be a possible value of Z that is representing the 90th percentile of the standard normal distribution. Find the value of Z1.
a) Let z be a random variable with a standard normal distribution. Find the indicated probability....
a) Let z be a random variable with a standard normal distribution. Find the indicated probability. (Round your answer to four decimal places.) P(−2.02 ≤ z ≤ −0.31) = Shade the corresponding area under the standard normal curve. b) Assume that x has a normal distribution with the specified mean and standard deviation. Find the indicated probability. (Round your answer to four decimal places.) μ = 50; σ = 15 P(40 ≤ x ≤ 47) = c) Find z such...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT