In: Statistics and Probability
Let z denote a random variable having a normal distribution with μ = 0 and σ = 1. Determine each of the following probabilities. (Round all answers to four decimal places.)
(a)
P(z < 0.1) =
(b)
P(z < −0.1) =
(c)
P(0.40 < z < 0.85) =
(d)
P(−0.85 < z < −0.40) =
(e)
P(−0.40 < z < 0.85) =
(f)
P(z > −1.25) =
(g)
P(z < −1.5 or z > 2.50) =
Let z denote a variable that has a standard normal distribution. Determine the value z* to satisfy the following conditions. (Round all answers to two decimal places.)
(a) P(z < z*) = 0.0256
z* =
(b) P(z < z*) = 0.0098
z* =
(c) P(z < z*) = 0.0507
z* =
(d) P(z > z*) = 0.0198
z* =
(e) P(z > z*) = 0.0098
z* =
(f) P(z > z* or z <
−z*) = 0.2009
z* =
Ans.
We find all answers using R:-
1 (a) P(z < 0.1)
> pnorm(0.1,0,1)
[1] 0.5398278
P(z < 0.1) = 0.5398
(b) P(z < −0.1)
> pnorm(-0.1,0,1)
[1] 0.4601722
P(z < −0.1) = 0.4602
(c). P(0.40 < z < 0.85) = P(z<0.85) - P(z<0.40)
> pnorm(0.85,0,1)- pnorm(0.40,0,1)
[1] 0.1469157
P(0.40 < z < 0.85) = 0.1469
(d). P(−0.85 < z < −0.40) = P(z<-0.40) - P(z<-0.85)
> pnorm(-0.40,0,1)- pnorm(-0.85,0,1)
[1] 0.1469157
P(−0.85 < z < −0.40) = 0.1469
(e). P(−0.40 < z < 0.85) = P(z<0.85) - P(z<-0.40)
> pnorm(0.85,0,1)- pnorm(-0.40,0,1)
[1] 0.4577592
P(−0.40 < z < 0.85) = 0.4578
(f). P(z > −1.25) = P(z<1.25) = 1-P(z<-1.25)
>1- pnorm(-1.25,0,1)
[1] 0.8943502
P(z > −1.25) = 0.8944
(g). P(z < −1.5 or z > 1.50) = P(z<-1.5) or P(z>1.50) = P(z<-1.5) = P(z>1.50)
P(z<-1.5)
> pnorm(-1.5,0,1)
[1] 0.0668072
P(z<-1.5) = 0.0668
P(z>1.5) = 1 - P(z<1.5)
> 1-pnorm(1.5,0,1)
[1] 0.0668072
P(z>1.5) = 1 - P(z<1.5) = 0.0668
P(z < −1.5 or z > 1.50) = 0.0668
2 (a). P(z < z*) = 0.0256
> qnorm(0.0256,0,1)
[1] -1.9498
z* = -1.95
(b). P(z < z*) = 0.0098
> qnorm(0.0098,0,1)
[1] -2.333918
z* = -2.33
(c) P(z < z*) = 0.0507
> qnorm(0.0507,0,1)
[1] -1.638104
z* = -1.64
(d). P(z > z*) = 0.0198
> qnorm(0.0198,0,1,lower.tail=F)
[1] 2.057897
z* = 2.06
(e). P(z > z*) = 0.0098
> qnorm(0.0098,0,1,lower.tail=F)
[1] 2.333918
z* = 2.33
(f). P(z>z* or z<-z*) = 0.2009
P(z>z*) = P(z<-z*)
> qnorm(0.2009,0,1,lower.tail=F)
[1] 0.8384108
z* = 0.84