In: Math
1A. Let z denote a random variable having a normal distribution with μ = 0 and σ = 1. Determine each of the probabilities below. (Round all answers to four decimal places.)
(a) P(z < 0.1) =
(b) P(z < -0.1) =
(c) P(0.40 < z < 0.84) =
(d) P(-0.84 < z < -0.40) =
(e) P(-0.40 < z < 0.84) =
(f) P(z > -1.26) =
(g) P(z < -1.49 or z > 2.50) =
1B. Find the following probabilities for X = pulse rates of group of people, for which the mean is 76 and the standard deviation is 8. Assume a normal distribution. (Round all answers to four decimal places.)
(a) P(X ≤ 68).
(b) P(X ≥ 82).
(c) P(56 ≤ X ≤ 92).
Solution:
1 )Given that,
Using standard normal table,
a ) P ( Z < 0.1 )
= 0.5398
Probability = 0.5398
b ) P ( Z < -0.1 )
=0.4602
Probability = 0.4602
c ) P(0.40 < z < 0.84)
P ( Z < 0.84 ) - P ( Z < 0.40 )
= 0.7995 - 0.6554
= 0.1441
Probability = 0.1441
d ) P( -0.84 < z < -0.40)
P ( Z < -0.40 ) - P ( Z < -0.84 )
=0.3446 - 0.2005
= 0.1441
Probability = 0.1441
e ) P( -0.40 < z < 0.84)
P ( Z < 0.84 ) - P ( Z < -0.40 )
= 0.7995 - 0.3446
=0.4549
Probability = 0.4549
f ) P ( Z >-1.26 )
= 1 - P ( Z < -1.26)
= 1 - 0.1038
= 0.8962
Probability = 0.8962
g) P(z < -1.49 or z > 2.50)
P ( Z < -1.49 )
=0.0681
P ( Z > 2.50)
= 1 - P ( Z < 2.50)
= 1 - 0.9938
=0.0062
Probability =0.0681 +0.0062 =0.1043
2 )Given that,
mean = = 76
standard deviation = =8
a) P( x ≤ 68 )
P ( x - / ) ≤( 68 - 76 / 8)
P ( z ≤ - 8 / 8 )
P ( z ≤ -1 )
= 0.1587
Probability = 0.1587
b ) P (x > 82 )
= 1 - P (x ≤ 82)
= 1 - P ( x - / ) ≤ ( 82 - 76 / 8)
= 1 - P ( z ≤ 6 / 8 )
= 1 - P ( z ≤ 0.75 )
Using z table
= 1 - 0.7734
= 0.2266
Probability = 0.2266
c ) P (56 ≤ x ≤ 92 )
P ( 56 - 76 / 8) < ( x - / ) ≤ ( 92 - 76 / 8)
P ( - 20 / 8 ≤ z ≤ 16 / 8 )
P (-2.5 ≤ z ≤ 2.00 )
P ( z ≤ 2.00 ) - P ( z ≤ -2.5 )
Using z table
=0.9772 - 0.0062
= 0.9710
Probability = 0.9710