In: Statistics and Probability
Let z denote a random variable having a normal distribution with μ = 0 and σ = 1. Determine each of the probabilities below. (Round all answers to four decimal places.)
(a) P(z < 0.2) =
(b) P(z < -0.2) =
(c) P(0.40 < z < 0.86) =
(d) P(-0.86 < z < -0.40)
=
(e) P(-0.40 < z < 0.86) =
(f) P(z > -1.24) =
(g) P(z < -1.5 or z > 2.50) =
Solution :
Given that,
Using standard normal table ,
(a)
P(z < 0.2) = 0.5793
(b)
P(z < -0.2) = 0.4207
(c)
P(0.40 < z < 0.86)
= P(z < 0.86) - P(z < 0.40)
= 0.8051 - 0.6554
= 0.1497
P(0.40 < z < 0.86) = 0.1497
(d)
P(-0.86 < z < -0.40)
= P(z < -0.40) - P(z < -0.86)
= 0.3446 - 0.1949
= 0.1497
P(-0.86 < z < -0.40) = 0.1497
(e)
P(-0.40 < z < 0.86)
= P(z < 0.86) - P(z < -0.40)
= 0.8051 - 0.3446
= 0.4605
P(-0.40 < z < 0.86) = 0.4605
(f)
P(z > -1.24) = 1 - P(z < -1.24) = 1 - 0.1075 = 0.8925
(g)
P(z < -1.5 or z > 2.50)
= 1 - P(z < -1.5) - P(z < 2.50)
= 1 - P(z < 2.50) - P(z < -1.5)
= 1 - P (0.9938 - 0.0668)
= 1 - 0.927
= 0.073
P(z < -1.5 or z > 2.50) = 0.073