Question

In: Physics

Imagine an isolated, 10-liter cylinder containing one mole of ideal gas held in the left five...

Imagine an isolated, 10-liter cylinder containing one mole of ideal gas held in the left five liters of the cylinder by a piston, initially locked in place. The right half of the cylinder is evacuated; the entire system is maintained at constant temperature. When the piston is freed to move frictionlessly, we could track the motion of the piston and the volume in 1-liter increments. Calculate the change in entropy (in J mol^-1 K^-1) of the gas upon expansion after each of the five 1-liter increments. Demonstrate that the total entropy is indeed maximized when the expansion is complete. Make a table.

Solutions

Expert Solution


Related Solutions

Imagine an isolated, 10-liter cylinder containing one mole of ideal gas held in the left five...
Imagine an isolated, 10-liter cylinder containing one mole of ideal gas held in the left five liters of the cylinder by a piston, initially locked in place. The right half of the cylinder is evacuated; the entire system is maintained at constant temperature. When the piston is freed to move frictionlessly, we could track the motion of the piston and the volume in 1-liter increments. Calculate the change in entropy (in J mol^-1 K^-1) of the gas upon expansion after...
A 30.0-liter cylinder of gas containing 97.0 mole % CO and 3.0% CO2 is delivered to...
A 30.0-liter cylinder of gas containing 97.0 mole % CO and 3.0% CO2 is delivered to your plant. You sign the receipt for it, noting that the gauge on the tank reads 2000 psi. Several days later you notice that the gauge reads 1875 psi, indicating a leak. The storage room in which the cylinder is kept has a volume of 24.2 m3 and is very poorly ventilated. Calculate the maximum mole% of CO in the room at the time...
A cylinder containing ideal gas is sealed by a piston that is above the gas. The...
A cylinder containing ideal gas is sealed by a piston that is above the gas. The piston is a cylindrical object, with a weight of 36.0 N, which can slide up or down in the cylinder without friction. The inner radius of the cylinder, and the radius of the piston, is 7.00 cm. The top of the piston is exposed to the atmosphere, and the atmospheric pressure is 101.3 kPa. The cylinder has a height of 30.0 cm, and, when...
0.5 mole of a monatomic ideal gas is loaded into a cylinder and contained by a...
0.5 mole of a monatomic ideal gas is loaded into a cylinder and contained by a frictionless piston. The piston is set so that there is an initial volume of 2L. The gas in the cylinder is at a temperature of 298K. The gas is allowed to expand adiabatically against 1 atm of pressure. Calculate V/n initial, q per mole, w per mole, delta U per mole, delta S per mole and delta H per mole. What is the final...
One mole of an ideal gas (CP = 5R/2) in a closed piston/cylinder is compressed from...
One mole of an ideal gas (CP = 5R/2) in a closed piston/cylinder is compressed from Ti = 298 K, Pi = 0.1 MPa to Pf = 0.25 MPa by the following pathways. For each pathway, calculate ΔU, ΔH, Q, and WEC: (a) isothermal; (b) constant volume; (c) adiabatic. i need your help as soon as possible please!!! please give me step by step so i can understand it Thank you!
Type or paste que One mole of an ideal gas CP=7R2 in a closed piston/cylinder arrangement...
Type or paste que One mole of an ideal gas CP=7R2 in a closed piston/cylinder arrangement is compressed from Ti=200 K , Pi=0.5 MPa to Pf=5 MPa by following paths:. ADIABATIC path ISOTHERMAL path Calculate ΔU, ΔH, Q and WEC for both paths. NOTE: Keep the answers in terms of ‘R’. stion here
a. If a 6 cm diameter cylinder containing 2 g of an ideal gas at 25o...
a. If a 6 cm diameter cylinder containing 2 g of an ideal gas at 25o C is fitted with a 5 kg piston with a 20 kg weight on the piston, calculate the pressure and volume of the ideal gas if the atmospheric pressure is 1 atm. If the 20 kg weight is removed, provide detailed comments without further calculations on what would happen. You may assume a molecular weight of 28 for the gas. b. Calculate the energy...
If (2 * 10^-1) the mole of diatomic ideal gas ( γ = 1.4) experiences a...
If (2 * 10^-1) the mole of diatomic ideal gas ( γ = 1.4) experiences a carnot cycle with temperatures of 22oC and 25oC. The initial pressure is Pa = 5x105Pa and during expansion isothermally at a higher temperature the volume increases 1.5 times. a) Determine the pressure and volume at points a, b, c and draw the graph b) Determine Q, W, and ΔU for each step and for the entire cycle c) Determine efficiency directly from results (b)
One mole of an ideal gas in an initial state P = 10atm, V = 5L,...
One mole of an ideal gas in an initial state P = 10atm, V = 5L, is taken reversibly in aclockwise direction around a circular path given by (V − 10)^2 + (P − 10)^2 = 25. Computethe amount of work done by the gas and the change in internal energy.
One mole of ideal gas, initially at 50OC and 1 bar, is changed to 150oC and...
One mole of ideal gas, initially at 50OC and 1 bar, is changed to 150oC and 4bar by 2 different mechanically reversible processes as follows: process 1: the gas is first heated at constant pressure until its temperature is 150oC and then it is compressed isothermally to 4 bar process 2:the gas is first compressed adiabatically to 4bar and then it is cooled at constant pressure to 150OC i)Assume Cv =2.5R and Cp=3.5R, estimate the heat(J) and work(J) for both...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT