Question

In: Chemistry

One mole of an ideal gas (CP = 5R/2) in a closed piston/cylinder is compressed from...

One mole of an ideal gas (CP = 5R/2) in a closed piston/cylinder is compressed
from Ti = 298 K, Pi = 0.1 MPa to Pf = 0.25 MPa by the following pathways. For each
pathway, calculate ΔU, ΔH, Q, and WEC: (a) isothermal; (b) constant volume; (c)
adiabatic.

i need your help as soon as possible please!!!
please give me step by step so i can understand it
Thank you!

Solutions

Expert Solution

The answer is as follow-

1) Isothermal -> w= -q , dH=dU=0

2) const. Volume -> w=0, dU=q=ncvvdT, dH=ncppdT

3) Adiabatic -> q=0, dU=ncvdT


Related Solutions

Type or paste que One mole of an ideal gas CP=7R2 in a closed piston/cylinder arrangement...
Type or paste que One mole of an ideal gas CP=7R2 in a closed piston/cylinder arrangement is compressed from Ti=200 K , Pi=0.5 MPa to Pf=5 MPa by following paths:. ADIABATIC path ISOTHERMAL path Calculate ΔU, ΔH, Q and WEC for both paths. NOTE: Keep the answers in terms of ‘R’. stion here
One mole of an ideal gas (CP/R=7/2), is compressed in a steady-flow compressor from 2.5 bar...
One mole of an ideal gas (CP/R=7/2), is compressed in a steady-flow compressor from 2.5 bar and 25°C to 6.5 bar and 120°C. The compressor rejects 0.5 kJ as heat to the surrounding at 293K. Calculate: 1.     The enthalpy change of the gas (in kJ) 2.     The entropy change of the gas (in J.mol-1) 3.     The work required for the compression (in kJ) 4.     The ideal work of the process (in kJ) 5.     The thermodynamic efficiency The lost work (in kJ)
cooling a gas in a piston cylinder. if the boundary work of piston cylinder is compressed...
cooling a gas in a piston cylinder. if the boundary work of piston cylinder is compressed W = -10 kj determine if it is gained or lost by the gas.
Consider a process in which one mole of a monatomic ideal gas is compressed from a...
Consider a process in which one mole of a monatomic ideal gas is compressed from a volume of V1 =1.459m3 to V2 =1m3 at a constant temperature of T =353.7 K. (a) What is the entropy change of the gas (in J/K units)? (b) What is the change in the value of PV for the gas (in J units)? (c) What is the energy change of the gas (in J units)? (d) What is the enthalpy change of the gas...
One kg mole of an ideal gas is compressed isothermally at 127°C from 1 atm to...
One kg mole of an ideal gas is compressed isothermally at 127°C from 1 atm to 10 atm in a piston-and-cylinder arrangement. Calculate the entropy change of the gas, the entropy change of the surroundings, and the total energy change resulting from the process, if: (a) the process is mechanically reversible and the surroundings consist of a heat reservoir at 127°C. (b) the process is mechanically reversible and the surroundings consist of a heat reservoir at 27°C. (c) the process...
A cylinder containing ideal gas is sealed by a piston that is above the gas. The...
A cylinder containing ideal gas is sealed by a piston that is above the gas. The piston is a cylindrical object, with a weight of 36.0 N, which can slide up or down in the cylinder without friction. The inner radius of the cylinder, and the radius of the piston, is 7.00 cm. The top of the piston is exposed to the atmosphere, and the atmospheric pressure is 101.3 kPa. The cylinder has a height of 30.0 cm, and, when...
One mole of an ideal gas at 1.00 atm and 298K with Cp,m=3.5R is put through...
One mole of an ideal gas at 1.00 atm and 298K with Cp,m=3.5R is put through the following cycle: a) (reversible) constant volume heating to twice its initial temperature; b) reversible, adiabatic expansion back to its initial temperature; c) reversible isothermal compression back to 1.00 atm. Calculate ΔS for each step and overall. d) What is the change of entropy of the surroundings?
The drawing shows an ideal gas confined to a cylinder by a massless piston that is...
The drawing shows an ideal gas confined to a cylinder by a massless piston that is attached to an ideal spring. Outside the cylinder is a vacuum. The cross-sectional area of the piston is A = 2.50 × 10-3 m2. The initial pressure, volume, and temperature of the gas are, respectively, P0, V0 = 6.00 × 10-4 m3 and T0 = 273 K, and the spring is initially stretched by an amount x0 = 0.090 m with respect to its...
The drawing shows an ideal gas confined to a cylinder by a massless piston that is...
The drawing shows an ideal gas confined to a cylinder by a massless piston that is attached to an ideal spring. Outside the cylinder is a vacuum. The cross-sectional area of the piston is A = 2.50 × 10-3 m2. The initial pressure, volume, and temperature of the gas are, respectively, P0, V0 = 6.00 × 10-4 m3 and T0 = 273 K, and the spring is initially stretched by an amount x0 = 0.092 m with respect to its...
1mol of an ideal gas is inside a cylinder with a piston under a pressure of...
1mol of an ideal gas is inside a cylinder with a piston under a pressure of 6 atm. When reducing the pressure to 2 atm at constant T = 300K: (a) Who is doing work, the piston or the gas? (b) What is the type of process for the maximum work? Find the maximum amount of work. (c) What is the type of process for the minimum work? Find the minimum amount of work.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT