Question

In: Physics

If (2 * 10^-1) the mole of diatomic ideal gas ( γ = 1.4) experiences a...

If (2 * 10^-1) the mole of diatomic ideal gas ( γ = 1.4) experiences a carnot cycle with temperatures of 22oC and 25oC. The initial pressure is Pa = 5x105Pa and during expansion
isothermally at a higher temperature the volume increases 1.5 times.
a) Determine the pressure and volume at points a, b, c and draw the graph
b) Determine Q, W, and ΔU for each step and for the entire cycle
c) Determine efficiency directly from results (b)

Solutions

Expert Solution


Related Solutions

1) A gas turbine operates on an ideal Joule cycle using air (γ = 1.4; R...
1) A gas turbine operates on an ideal Joule cycle using air (γ = 1.4; R = 0.287 kJ/kg K) as working fluid. Air enters the compressor at temperature of 27◦C and pressure of 1.25 bar and is compressed to 7.6 bar. When the maximum cycle temperature is limited to 800 oC, calculate, (i) the thermal efficiency and work ratio of the cycle (ii) the temperature of air exiting the turbine and the change in specific entropy of turbine process...
An ideal gas with γ = 1.4 occupies 6.0 L at 300 K and 130 kPa...
An ideal gas with γ = 1.4 occupies 6.0 L at 300 K and 130 kPa pressure. It is compressed adiabatically until its volume is 2.0 L. It's then cooled at constant pressure until it reaches 300 K, then allowed to expand isothermally back to its initital state. 1.Find the net work done on the gas.
One mole of a diatomic (rigid rotator) ideal gas has an initial volume of 1 L...
One mole of a diatomic (rigid rotator) ideal gas has an initial volume of 1 L and temperature of 400 K (state A). First the gas undergoes an isometric process such that the final pressure is 4 times the initial pressure (state B). It then expands isothermally back to the initial pressure (state C). Then it is compressed isobarically back to its original state. 1. Draw a PV diagram illustrating the above cycle. On the diagram indicate where the 3...
An engine that operates by means of an ideal diatomic ideal gas in a piston with...
An engine that operates by means of an ideal diatomic ideal gas in a piston with 2.70 moles of gas. The gas starts at point A with 3x103 Pa of pressure and 2.5x10-2 m3. To get from B from A, it is expanded by an isobaric process to double the initial volume. From B to C it expands adiabatically until it reaches three times the volume in A. From C to D the pressure decreases without changing the volume and...
Efficiency An ideal diatomic gas is used in a reversible heat cycle. The gas begins in...
Efficiency An ideal diatomic gas is used in a reversible heat cycle. The gas begins in state A with pressure 100 kPa, temperature300 K, and volume 0.50 L. It first undergoes an isochoric heating to state B with temperature 900 K. That is followed by an isothermal expansion to state C. Finally, an isobaric compression that returns the gas to state A. (a)Determine the pressure, volume, and temperature of state B. (b)Determine the pressure, volume, and temperature of state C....
One mole of ideal gas, initially at 50OC and 1 bar, is changed to 150oC and...
One mole of ideal gas, initially at 50OC and 1 bar, is changed to 150oC and 4bar by 2 different mechanically reversible processes as follows: process 1: the gas is first heated at constant pressure until its temperature is 150oC and then it is compressed isothermally to 4 bar process 2:the gas is first compressed adiabatically to 4bar and then it is cooled at constant pressure to 150OC i)Assume Cv =2.5R and Cp=3.5R, estimate the heat(J) and work(J) for both...
11. Consider a Carnot cycle with 2.25 moles of a diatomic ideal gas as the working...
11. Consider a Carnot cycle with 2.25 moles of a diatomic ideal gas as the working substance (assume Cv = 2.5*R). The following are the steps of the cycle: Step I: reversible, isothermal expansion at 300.0 °C from 10.00 L to 16.00 L. Step II: reversible, a diabatic expansion until the temperature decreases to 50.0 °C. Step III: reversible, isothermal compression at 50.0 °C. Step IV: reversible, adiabatic compression back to the initial conditions. A. Calculate q, w, ΔU, ΔH,...
What is the difference between isothermal and adiabatic? 300 cm3 of an ideal diatomic gas at...
What is the difference between isothermal and adiabatic? 300 cm3 of an ideal diatomic gas at a pressure of 1 atmosphere and a temperature of 300 K (i.e. room temperature) is contained by a cylinder with a piston top. A camshaft turns and drives the piston further into the cylinder, reducing the volume to 100 cm3 . (a) What is the final pressure if this compression takes place isothermally? What is the final pressure and temperature if the compression takes...
Knowing: ε=V_4/V_1 =10, ρ=V_2/V_1 =2, and γ=1.4 for the cycle represented in Figure 2, calculate the...
Knowing: ε=V_4/V_1 =10, ρ=V_2/V_1 =2, and γ=1.4 for the cycle represented in Figure 2, calculate the Diesel cycle efficiency and compare the value with the Carnot efficiency. Draw the V-T, and P-T cycle diagrams.
0.5 mole of a monatomic ideal gas is loaded into a cylinder and contained by a...
0.5 mole of a monatomic ideal gas is loaded into a cylinder and contained by a frictionless piston. The piston is set so that there is an initial volume of 2L. The gas in the cylinder is at a temperature of 298K. The gas is allowed to expand adiabatically against 1 atm of pressure. Calculate V/n initial, q per mole, w per mole, delta U per mole, delta S per mole and delta H per mole. What is the final...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT