Question

In: Advanced Math

Find the solution of the initial value problem: y'' + 4y' + 20y = -3sin(2x), y(0)...

Find the solution of the initial value problem:

y'' + 4y' + 20y = -3sin(2x), y(0) = y'(0) = 0

Solutions

Expert Solution


Related Solutions

Find the solution of the given initial value problem. 2y''+y'-4y=0 ; y(0)=0 y'(0)=1
Find the solution of the given initial value problem. 2y''+y'-4y=0 ; y(0)=0 y'(0)=1
Solve the following initial value problem: y'''-4y''+20y'=-102e^3x, y(0)=3, y'(0)=-2, y''(0)=-2
Solve the following initial value problem: y'''-4y''+20y'=-102e^3x, y(0)=3, y'(0)=-2, y''(0)=-2
Find the solution to the problem of initial value 2y'''' +3y'''--16''+15y'-- 4y=0 subjected to y(0)= --...
Find the solution to the problem of initial value 2y'''' +3y'''--16''+15y'-- 4y=0 subjected to y(0)= -- 2, y'(0)=6, y''(0)=3, y'''(0)=1/2
Solve the initial value problem: y'' + 4y' + 4y = 0; y(0) = 1, y'(0)...
Solve the initial value problem: y'' + 4y' + 4y = 0; y(0) = 1, y'(0) = 0. Solve without the Laplace Transform, first, and then with the Laplace Transform.
(3 pts) Solve the initial value problem 25y′′−20y′+4y=0, y(5)=0, y′(5)=−e2. (3 pts) Solve the initial value...
(3 pts) Solve the initial value problem 25y′′−20y′+4y=0, y(5)=0, y′(5)=−e2. (3 pts) Solve the initial value problem y′′ − 2√2y′ + 2y = 0, y(√2) = e2, y′(√2) = 2√2e2. Consider the second order linear equation t2y′′+2ty′−2y=0, t>0. (a) (1 pt) Show that y1(t) = t−2 is a solution. (b) (3 pt) Use the variation of parameters method to obtain a second solution and a general solution.
y''+4y'+4y=2e^{-2x} Find general solution.
y''+4y'+4y=2e^{-2x} Find general solution.
Consider the following initial value problem. y''−4y = 0, y(0) = 0, y'(0) = 5 (a)...
Consider the following initial value problem. y''−4y = 0, y(0) = 0, y'(0) = 5 (a) Solve the IVP using the characteristic equation method from chapter 4. (b) Solve the IVP using the Laplace transform method from chapter 7. (Hint: If you don’t have the same final answer for each part, you’ve done something wrong.)
find the solution of the given initial value problem 1.   y''+4y=t2+3et, y(0) =0, y'(0) =2 2....
find the solution of the given initial value problem 1.   y''+4y=t2+3et, y(0) =0, y'(0) =2 2. y''−2y'+y=tet +4, y(0) =1, y'(0) =1
FIND THE GENERAL SOLUTION TO THE DE: Y”’ + 4Y” – Y’ – 4Y = 0...
FIND THE GENERAL SOLUTION TO THE DE: Y”’ + 4Y” – Y’ – 4Y = 0                                           COMPUTE:               L {7 e 3t – 5 cos ( 2t ) – 4 t 2 }                  COMPUTE:              L – 1 {(3s + 6 ) / [ s ( s 2 + s – 6 ) ] }            SOLVE THE INITIAL VALUE PROBLEM USING LAPLACE TRANSFORMS:              Y” + 6Y’ + 5Y = 12 e t       WHEN :   f ( 0 ) = -...
Find the solution of the initial value problem y′′+12y′+32y=0, y(0)=12 and y′(0)=−84.
Find the solution of the initial value problem y′′+12y′+32y=0, y(0)=12 and y′(0)=−84.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT