Question

In: Advanced Math

Solve the initial value problem: y'' + 4y' + 4y = 0; y(0) = 1, y'(0)...

Solve the initial value problem: y'' + 4y' + 4y = 0; y(0) = 1, y'(0) = 0.

Solve without the Laplace Transform, first, and then with the Laplace Transform.

Solutions

Expert Solution


Related Solutions

use laplace transform to solve the initial value problem: y''+4y=3sint y(0)=1, y'(0)=-1
use laplace transform to solve the initial value problem: y''+4y=3sint y(0)=1, y'(0)=-1
Solve the given initial-value problem. y'' + 4y' + 4y = (5 + x)e^(−2x) y(0) =...
Solve the given initial-value problem. y'' + 4y' + 4y = (5 + x)e^(−2x) y(0) = 3, y'(0) = 6 Arrived at answer y(x)=3e^{-2x}+12xe^{-2x}+(15/2}x^2e^{-2x}+(5/6)x^3e^{-2x) by using variation of parameters but it was incorrect.
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  ...
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  =  0, y′′(0)  =  0, y′′′(0)  =  0.
solve the following initial value problem y''+4y'=g(t),y(0)=0,y' (0)=1 if g(t) is the function which is 1...
solve the following initial value problem y''+4y'=g(t),y(0)=0,y' (0)=1 if g(t) is the function which is 1 on [0,1) and zero elsewhere
(3 pts) Solve the initial value problem 25y′′−20y′+4y=0, y(5)=0, y′(5)=−e2. (3 pts) Solve the initial value...
(3 pts) Solve the initial value problem 25y′′−20y′+4y=0, y(5)=0, y′(5)=−e2. (3 pts) Solve the initial value problem y′′ − 2√2y′ + 2y = 0, y(√2) = e2, y′(√2) = 2√2e2. Consider the second order linear equation t2y′′+2ty′−2y=0, t>0. (a) (1 pt) Show that y1(t) = t−2 is a solution. (b) (3 pt) Use the variation of parameters method to obtain a second solution and a general solution.
Solve the initial value problem: 4y''+12y'+9y=0 y(0)=1, y'(0)=-4 a. Using the characteristic equation of the above....
Solve the initial value problem: 4y''+12y'+9y=0 y(0)=1, y'(0)=-4 a. Using the characteristic equation of the above. b. Using Laplace transform.
Solve the initial value problem: Y''-4y'+4y=f(t) y(0)=-2, y'(0)=1 where f(t) { t if 0<=t<3 , t+2...
Solve the initial value problem: Y''-4y'+4y=f(t) y(0)=-2, y'(0)=1 where f(t) { t if 0<=t<3 , t+2 if t>=3 }
Solve the following initial value problem: y'''-4y''+20y'=-102e^3x, y(0)=3, y'(0)=-2, y''(0)=-2
Solve the following initial value problem: y'''-4y''+20y'=-102e^3x, y(0)=3, y'(0)=-2, y''(0)=-2
Find the solution of the given initial value problem. 2y''+y'-4y=0 ; y(0)=0 y'(0)=1
Find the solution of the given initial value problem. 2y''+y'-4y=0 ; y(0)=0 y'(0)=1
Consider the following initial value problem. y''−4y = 0, y(0) = 0, y'(0) = 5 (a)...
Consider the following initial value problem. y''−4y = 0, y(0) = 0, y'(0) = 5 (a) Solve the IVP using the characteristic equation method from chapter 4. (b) Solve the IVP using the Laplace transform method from chapter 7. (Hint: If you don’t have the same final answer for each part, you’ve done something wrong.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT