In: Math
The presence of student-owned information and communication technologies (smartphones, laptops, tablets, etc.) in today's college classroom creates learning problems when students distract themselves during lectures by texting and using social media. Research on multitasking presents clear evidence that human information processing is insufficient for attending to multiple stimuli and for performing simultaneous tasks.
To collect data on how multitasking with these technologies interferes with the learning process, a carefully-designed study was conducted at a mostly residential large public university in the Northeast United States. Junco, R. In-class multitasking and academic performance. Computers in Human Behavior (2012)
At the beginning of a semester a group of students who were US residents admitted through the regular admissions process and who were taking the same courses were selected based on their high use of social media and the similarities of their college GPA's. The selected students were randomly assigned to one of 2 groups:
group 1 students were told to text and use Facebook during classes in their usual high-frequency manner;
group 2 students were told to refrain from any use of texting and Facebook during classes.
At the conclusion of the semester the semester GPA's of the students were collected. The results are shown in the table below.
IN-CLASS MUTLITASKING STUDY
Frequent Facebook Use and Texting
x1 = 2.87
s1 = 0.67
n1 = 65
No Facebook Use or Texting
x2 = 3.16
s2 = 0.53
n2 = 65
Do texting and Facebook use during class have a negative affect
on GPA? To answer this question perform a hypothesis test
with
H0: μ1−μ2 = 0
where μ1 is the mean semester GPA of all students who
text and use Facebook frequently during class and μ2 is
the mean semester GPA of all students who do not text or use
Facebook during class.
Question 1. Calculate a 95% confidence interval for μ1−μ2 where μ1 is the mean semester GPA of all students who text and use Facebook frequently during class and μ2 is the mean semester GPA of all students who do not text or use Facebook during class.
Answer 1
First we need to perform F-test for the Equality of Two Population Variances:
Thus based on F-test, we can assume that population variances are equal.
Calculation of 95% confidence interval assuming equal population variances:
A 95% confidence interval for μ1−μ2 is (-0.50, -0.08)