Question

In: Electrical Engineering

Assume that a 50-Hz, 50-kVA, star-delta transformer bank of vector group Yd11 is accidentally paralleled with...

Assume that a 50-Hz, 50-kVA, star-delta transformer bank of vector group Yd11 is accidentally paralleled with a 50-Hz, 50-kVA, star-star transformer bank of vector group Yy0. Both have a bank ratio of 2000/200-V. The equivalent impedances referred to the respective secondaries are ZΔ = 0.1106/60.2° Ω and ZY = 0.0369/60.2° Ω. (a) Assuming the load switch to be open, draw the connection diagram   (3.0 marks). (b) Determine the magnitude of the current circulating in each transformer secondary   (15.0 marks). (c) Express the current in (b) as a percent of the rated transformer current for each transformer   (2.0 marks).                                                                                  Use the method of mesh analysis applied to the three-phase circuits (marks will not be awarded for using the single-phase equivalent method). show all your steps

Solutions

Expert Solution


Related Solutions

A single-phase transformer 5 kVA, operating at 50 Hz frequency has turns ratio of 20. The...
A single-phase transformer 5 kVA, operating at 50 Hz frequency has turns ratio of 20. The primary and the secondary winding resistances are 0.15 Ω and 0.025 Ω respectively, and the primary and secondary leakage reactances are 0.65 Ω and 0.15 Ω respectively. The magnetizing inductance and core loss resistance are 6 Ω and 1 Ω respectively. i. Calculate the primary and secondary impedances referred to primary and sketch the APPROXIMATE equivalent circuit. (Note: please show all parameters in the...
A single-phase transformer of 3 kVA, 60 Hz, has a voltage ratio on open circuit of...
A single-phase transformer of 3 kVA, 60 Hz, has a voltage ratio on open circuit of 240 / 120 V. The primary and secondary resistances are 0.25 Ω and 0.05 Ω respectively, the corresponding leakage reactance being 0.75 Ω and 0.18 Ω. The transformer delivers current to the load at a 0.9 power factor lagging. Determine the voltage across the load.                                                                   Determine the power dissipated by the load.                                                          Determine percentage voltage regulation referred to the secondary...
4.11)The equivalent circuit parameters of a 150 kVA, 2400 V/ 240 V, 60 Hz transformer are...
4.11)The equivalent circuit parameters of a 150 kVA, 2400 V/ 240 V, 60 Hz transformer are as follows: RHV = 0.21Ω, RLV = 2mΩ, XlHV = 0.45Ω, XlLV = 4.6mΩ, XmHV = 1.6kΩ, and RcHV = 12kΩ. The transformer delivers to a load, rated current at a power factor of 0.85 lagging at rated voltage. Determine the input voltage, current, apparent power and power factor, (a) using the approximate equivalent circuit, and (b) not using the approximate equivalent circuit. Problem...
The 500 KVA, 69kV/11kV, 60 Hz transformer has total resistance Rp of 100 Ω and total...
The 500 KVA, 69kV/11kV, 60 Hz transformer has total resistance Rp of 100 Ω and total leakage reactance of Xp of 600 Ω. Calculate The per unit impedance of the transformer in percent (just magnitude) The voltage regulation of the transformer when it delivers 200 KVA with a lagging power factor of 90% while the secondary voltage is fixed at 11 kV. The actual primary voltage V1. The actual line current I1.
The efficiency of a 400-kVA, single-phase, 60-Hz transformer is 98.77% when delivering full-load current at 0.8...
The efficiency of a 400-kVA, single-phase, 60-Hz transformer is 98.77% when delivering full-load current at 0.8 power factor, and 99.13% with half-rated current at unity power factor. calculate: (a) The iron loss. (b) the full-load copper loss. (c) the efficiency at 3/4 load, 0.9 power factor
A 350-KVA 2300  230; volt, 60-hz transformer has percent core loss, resistance and percent leakage reactance of...
A 350-KVA 2300  230; volt, 60-hz transformer has percent core loss, resistance and percent leakage reactance of 0.56 , 33 and 5.57 respectively. For 10 degree increments of power-factor angle, tabulate and plot percent regulation, and efficiency. Power factor for operation between 0.5 lagging and 0.5 leading.
A single-phase 300-kVA, 220/4400 V, 60 Hz transformer yielded the following information when tested: High voltage...
A single-phase 300-kVA, 220/4400 V, 60 Hz transformer yielded the following information when tested: High voltage winding open: Voltage=220 V, Current=40 A Power=l 000W Low voltage terminal shorted: Voltage= 195 V, Current=68.18A Power=4000W Find the equivalent circuit of the transformer as viewed from the high voltage Calculate the .efficiency of the transformer when it delivers its rated load at rated terminal voltage and 8 power factor lagging.
Find the main dimensions of a 2500 KVA, 187.5 rpm, 50 Hz, 3 phase, 3 kV,...
Find the main dimensions of a 2500 KVA, 187.5 rpm, 50 Hz, 3 phase, 3 kV, salient pole synchronous generator. The generator is to be a vertical, water wheel type. The specific magnitude loading is 0.6 Wb/m2 and the specific electric loading is 34000 A/m. Use circular pole with ratio of core length to pole pitch=0.65. Find the normal speed.
A 20MVA, 11kV/132 kV, star-delta transformer is being protected by a biased differential protection system. The...
A 20MVA, 11kV/132 kV, star-delta transformer is being protected by a biased differential protection system. The transformer is supplied from 132 kV grids and on full load operation. Determine the suitable CTs ratio at both side of the transformer if current at restraints coil is rated at 5 A. (CT ratios available: 100/5A, 300/5A, 600/5A, 800/5A, 900/5A, 1000/5A, 1500/5A, 2000/5A, 3000/5A) If lightning strikes at the secondary of the transformer which injecting IL=10kA to the system; (i) Determine the primary...
A 3-phase, 5 kVA, 208 V, 4-pole, 60 Hz, star-connected synchronous generator has negligible stator winding...
A 3-phase, 5 kVA, 208 V, 4-pole, 60 Hz, star-connected synchronous generator has negligible stator winding resistance and a synchronous reactance of 8 Ω per phase at the rated terminal voltage. The generator is connected in parallel to a 3-phase, 208 V, 60 Hz infinite bus. All losses may be neglected. a)   Determine the excitation voltage and the power angle when the machine is delivering rated apparent power at 0.8 PF lagging. b)   If the field excitation is increased by...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT