Question

In: Mechanical Engineering

Ai inventor proposes a four -stroke cycle running on helium. The engine has a compression ratio...

Ai inventor proposes a four -stroke cycle running on helium. The engine has a compression ratio of 8 and maximum operating temperature of 1,500 K. The atmospheric conditions are temperature of 300 K and pressure of 100 kPa. The processes can be approximated as below:

1- 2 isentropic compression

2- 3 constant volume heat addition

3- 4 isentropic expansion

4- 1 constant pressure heat removal

a.

Plot P-v and T-s diagrams for this cycle.

b.

Determine state conditions at the end of each step by filling up the table below.

c. Heat addition

d. Net work

e. Thermal efficiency

Hint: Cp= 5.193 kJ/kg.K, Cv = 3.116 kJ/kg.K, R = 2.077 kJ/kg.K, k = 1.667

Please show work for all questions a-e. Thank You

Solutions

Expert Solution


Related Solutions

A four-stroke engine is running on methane with an equivalence ratio of 0.8. The air and...
A four-stroke engine is running on methane with an equivalence ratio of 0.8. The air and fuel enter the engine at 250 C, the exhaust is at 5270 C, the heat rejected to the coolant is 340 MJ/kmol of fuel.(a)Write the equations for stoichiometric and actual combustion.(b)By calculating the enthalpy of the exhaust flow, deduce the specific work output of the engine, and thus the overall efficiency. (c)If the engine has a swept volume of 5 Litres, and volumetric efficiency...
Design a four stroke cycle for SI engine using crankcase compression. Draw schematics of the six...
Design a four stroke cycle for SI engine using crankcase compression. Draw schematics of the six basic process: intake, compression, combustion, expansion, blowdown and exhaust. Describe fully the intake of air, fuel and oil.
The 12 cylinder 2 stroke cycle compression ignition engine of an oil tanker is operating at...
The 12 cylinder 2 stroke cycle compression ignition engine of an oil tanker is operating at 150 rpm The brake mean effective pressure of the engine is 400 kPa and the excess air coefficient is 2. The crankshaft of the engine is directly coupled to a propeller and a torque of 1500 kN-m is applied. The engine operates on light fuel oil which can be approximated as C12H26. If the brake specific fuel consumption is 200 g/hp-h what is the...
A Diesel engine with a compression ratio of 16 has a cutoff ratio of 1.5. The...
A Diesel engine with a compression ratio of 16 has a cutoff ratio of 1.5. The state before polytropic compression (exponent 1.3) is 1700 cm3 , 96 kPa and 22°C and there is isentropic expansion. (a) Sketch the P-v diagram for this cycle. (b) Calculate the heat transfer in and heat transfer out. answer must be Qin = 657 J or 724 J or 866 J, Qout = 291 J or 296 J or (c) Determine the thermal efficiency. answer...
A Diesel engine with a compression ratio of 16 has a cutoff ratio of 1.5. The...
A Diesel engine with a compression ratio of 16 has a cutoff ratio of 1.5. The state before polytropic compression (exponent 1.3) is 1700 cm3, 96 kPa and 22°C and there is isentropic expansion. (a) Sketch the P-v diagram for this cycle. (b) Calculate the heat transfer in and heat transfer out. (c) Determine the thermal efficiency. (d) Calculate the mean effective pressure.
An ideal four stroke Otto cycle engine has 6 cylinders and a displacement of 4 Liters....
An ideal four stroke Otto cycle engine has 6 cylinders and a displacement of 4 Liters. It has a compression ratio of 8.5:1. If the mean effective pressure is 4000 kPa when operating at 3000 rpm, what will be the indicated power and what is the required heat transfer to the engine from a combusting fuel?
An ideal Otto cycle has a compression ratio of 7. At the beginning of the compression...
An ideal Otto cycle has a compression ratio of 7. At the beginning of the compression process, air is at 98 kPa, 30oC and 766 kJ/kg of heat is transferred to air during the constant-volume heat addition process. Determine (a) the pressure (p3) and temperature (T3) at the end of the heat addition process, (b) the net work output, (c) the thermal efficiency and (d) the mean effective pressure for the cycle. Use the IG model
An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression...
An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C, and 900 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat-addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle
An ideal Otto cycle has a compression ratio of 8.5 At the beginning of the compression...
An ideal Otto cycle has a compression ratio of 8.5 At the beginning of the compression process, air is at 98 kPa and 27∘C, If the Tmax cannot exceed 2300K and 3e-5 kg of. assuming constant specific heats at ambient temperature, determine (a) the pressure and temperature at the end of each process. (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle.
An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression...
An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C, and 730 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Take into account the variation of specific heats with temperature. The gas constant of air is R = 0.287 kJ/kg·K. Determine: (a) the pressure and temperature at the end of the heat addition process (b) the net work output (c) the thermal...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT