Question

In: Mechanical Engineering

A Diesel engine with a compression ratio of 16 has a cutoff ratio of 1.5. The...

A Diesel engine with a compression ratio of 16 has a cutoff ratio of 1.5. The state before polytropic compression (exponent 1.3) is 1700 cm3, 96 kPa and 22°C and there is isentropic expansion.
(a) Sketch the P-v diagram for this cycle.

(b) Calculate the heat transfer in and heat transfer out.

(c) Determine the thermal efficiency.

(d) Calculate the mean effective pressure.

Solutions

Expert Solution


Related Solutions

A Diesel engine with a compression ratio of 16 has a cutoff ratio of 1.5. The...
A Diesel engine with a compression ratio of 16 has a cutoff ratio of 1.5. The state before polytropic compression (exponent 1.3) is 1700 cm3 , 96 kPa and 22°C and there is isentropic expansion. (a) Sketch the P-v diagram for this cycle. (b) Calculate the heat transfer in and heat transfer out. answer must be Qin = 657 J or 724 J or 866 J, Qout = 291 J or 296 J or (c) Determine the thermal efficiency. answer...
A diesel engine has a compression ratio of 19. The lowest pressure of the bike is...
A diesel engine has a compression ratio of 19. The lowest pressure of the bike is 250 kPa, the lowest the temperature is 180 ºC and the heat supply is 1200 kJ / kg. (a) Draw a principle image of the engine. (1p) (b) Draw a T-s and a P-v diagram with numbered points for the cycle (1p) (c) Set up at least one table of given input for relevant points (1p) The table can also be filled in with...
An ideal diesel engine has a compression ratio of 20 and uses air as the working...
An ideal diesel engine has a compression ratio of 20 and uses air as the working fluid. The state of air at the beginning of the compression process is 95 kPa and 200C. If the maximum temperature in the cycle is not to exceed 2200 K, Determine: a) The thermal efficiency, and b) The mean effective pressure, and Assume constant specific heats for air at room temperature.
An ideal diesel engine has a compression ratio of 20 and uses air as the working...
An ideal diesel engine has a compression ratio of 20 and uses air as the working fluid. The state of air at the beginning of the compressor process is 100 kpa and 27 C. The maximum temperature in the cycle is 2200 K and the cutoff ratio is 1.2 Determine the following: The internal energies at the beginning and the end of the compression The enthalpy before and end of the combustion The internal energy before and end of the...
A diesel engine has an inlet at 100 kPa, 310 K and a compression ratio of...
A diesel engine has an inlet at 100 kPa, 310 K and a compression ratio of 21:1. The combustion releases 1400 kJ/kg. Find the cycle efficiency and mean effective pressure.
An ideal dual cycle has a compression ratio of 15 and a cutoff ratio of 1.4....
An ideal dual cycle has a compression ratio of 15 and a cutoff ratio of 1.4. The pressure ratio during constant-volume heat addition process is 1.1. The state of the air at the beginning of the compression is P1 = 98 kPa and T1 = 24°C. Calculate the cycle’s net specific work, specific heat addition, and thermal efficiency. Use constant specific heats at room temperature.
An ideal Otto engine has a compression ratio of 10 and uses air as the working...
An ideal Otto engine has a compression ratio of 10 and uses air as the working fluid. The state of air at the beginning of the compression process is 100 kPa and 27 0C. The maximum temperature in the cycle is 2100K. (R=0.287 for air) (using variable specific heat) Draw the P-v diagram of the Otto cycle Determine the specific internal energies at the beginning and the end of the compression, Determine the specific internal energies before and after the...
The compression ratio of an ideal air-powered Diesel cycle is 20. At the beginning of the...
The compression ratio of an ideal air-powered Diesel cycle is 20. At the beginning of the compression process, the pressure of the air is 100 kPa, the temperature is 20 ° C, and the highest temperature of the cycle is required not to exceed 2250 K. Show the cycle in the P-v diagram. Accept specific temperatures constant at room temperature. k=1.4 CP=1.005 kJ/kgK CV=0.718 kJ/kgK R=0.287 kJ/kgK a) Calculate the temperatures entering and leaving the cycle, the thermal efficiency of...
Ai inventor proposes a four -stroke cycle running on helium. The engine has a compression ratio...
Ai inventor proposes a four -stroke cycle running on helium. The engine has a compression ratio of 8 and maximum operating temperature of 1,500 K. The atmospheric conditions are temperature of 300 K and pressure of 100 kPa. The processes can be approximated as below: 1- 2 isentropic compression 2- 3 constant volume heat addition 3- 4 isentropic expansion 4- 1 constant pressure heat removal a. Plot P-v and T-s diagrams for this cycle. b. Determine state conditions at the...
The compression ratio is 8 in an engine working with the ideal Otto cycle. The heat...
The compression ratio is 8 in an engine working with the ideal Otto cycle. The heat transfer to the engine takes place from a heat source at a temperature of 1000 ° C and the heat transfer from the engine to the outside takes place in the environment of 20 ° C and 100 kPa. At the start of the isentropic compression process, the temperature is 50 ⁰C and the pressure is 110 kPa. The temperature at the end of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT