Question

In: Math

1. For a map f : V ?? W between vector spaces V and W to...

1. For a map f : V ?? W between vector spaces V and W to be a linear map it must preserve the structure of V . What must one verify to verify whether or not a map is linear?

2. For a map f : V ?? W between vector spaces to be an isomorphism it must be a linear map and also have two further properties. What are those two properties? As well as giving the names of the properties, explain what the names mean.

3.Every linear transformation is an isomorphism, but the isomorphism f : x y ?? x y is not a linear transformation. Why

Solutions

Expert Solution

  1. For a map f : V? W between vector spaces V and W to be a linear map, it must preserve the structure of V. We must verify that f preserves vector addition and also scalar multiplication i.e. if u and v are arbitrary vectors in V and if k is an arbitrary scalar, then f is a linear map if ana only if f(u+v) = f(u)+f(v) and f(ku) = kf(u).
  2. For a map f : V? W between vector spaces to be an isomorphism it must be a linear map and also have two further properties.

An isomorphism is both injective or one-to-one and surjective or onto mapping. The mapping f : V? W is injective or one-to-one if f(u) = f(v). The mapping f : V ? W is surjective or onto if every w? W has a pre- image under f in V.

3. The statement is incorrect. Every linear transformation is an isomorphism, and every isomorphism f between 2 vector spaces is an invertible linear transformation. The notations given are not clear. Please elaborate.


Related Solutions

Questionnnnnnn a. Let V and W be vector spaces and T : V → W a...
Questionnnnnnn a. Let V and W be vector spaces and T : V → W a linear transformation. If {T(v1), . . . T(vn)} is linearly independent in W, show that {v1, . . . vn} is linearly independent in V . b. Define similar matrices c Let A1, A2 and A3 be n × n matrices. Show that if A1 is similar to A2 and A2 is similar to A3, then A1 is similar to A3. d. Show that...
Let Vand W be vector spaces over F, and let B( V, W) be the set...
Let Vand W be vector spaces over F, and let B( V, W) be the set of all bilinear forms f: V x W ~ F. Show that B( V, W) is a subspace of the vector space of functions 31'( V x W). Prove that the dual space B( V, W)* satisfies the definition of tensor product, with respect to the bilinear mapping b: V x W -> B( V, W)* defined by b(v, w)(f) =f(v, w), f E...
Let V and W be finite dimensional vector spaces over a field F with dimF(V )...
Let V and W be finite dimensional vector spaces over a field F with dimF(V ) = dimF(W ) and let T : V → W be a linear map. Prove there exists an ordered basis A for V and an ordered basis B for W such that [T ]AB is a diagonal matrix where every entry along the diagonal is either a 0 or a 1.
Question 1. Let V and W be finite dimensional vector spaces over a field F with...
Question 1. Let V and W be finite dimensional vector spaces over a field F with dimF(V ) = dimF(W) and let T : V → W be a linear map. Prove there exists an ordered basis A for V and an ordered basis B for W such that [T] A B is a diagonal matrix where every entry along the diagonal is either a 0 or a 1. Hint 1. Suppose A = {~v1, . . . , ~vn}...
Prove that if U, V and W are vector spaces such that U and V are...
Prove that if U, V and W are vector spaces such that U and V are isomorphic and V and W are isomorphic, then U and W are isomorphic.
4. Verify that the Cartesian product V × W of two vector spaces V and W...
4. Verify that the Cartesian product V × W of two vector spaces V and W over (the same field) F can be endowed with a vector space structure over F, namely, (v, w) + (v ′ , w′ ) := (v + v ′ , w + w ′ ) and c · (v, w) := (cv, cw) for all c ∈ F, v, v′ ∈ V , and w, w′ ∈ W. This “product” vector space (V ×...
1. Let V and W be vector spaces over R. a) Show that if T: V...
1. Let V and W be vector spaces over R. a) Show that if T: V → W and S : V → W are both linear transformations, then the map S + T : V → W given by (S + T)(v) = S(v) + T(v) is also a linear transformation. b) Show that if R: V → W is a linear transformation and λ ∈ R, then the map λR: V → W is given by (λR)(v) =...
Let f : V mapped to W be a continuous function between two topological spaces V...
Let f : V mapped to W be a continuous function between two topological spaces V and W, so that (by definition) the preimage under f of every open set in W is open in V : Y is open in W implies f^−1(Y ) = {x in V | f(x) in Y } is open in V. Prove that the preimage under f of every closed set in W is closed in V . Feel free to take V...
V and W are finite dimensional inner product spaces,T: V→W is a linear map 1A: Give...
V and W are finite dimensional inner product spaces,T: V→W is a linear map 1A: Give an example of a map T from R2 to itself (with the usual inner product) such that〈Tv,v〉= 0 for every map. 1B: Suppose that V is a complex space. Show that〈Tu,w〉=(1/4)(〈T(u+w),u+w〉−〈T(u−w),u−w〉)+(1/4)i(〈T(u+iw),u+iw〉−〈T(u−iw),u−iw〉 1C: Suppose T is a linear operator on a complex space such that〈Tv,v〉= 0 for all v. Show that T= 0 (i.e. that Tv=0 for all v).
V and W are finite dimensional inner product spaces,T:V→W is a linear map, and∗represents the adjoint....
V and W are finite dimensional inner product spaces,T:V→W is a linear map, and∗represents the adjoint. 1A: Let n be a positive integer, and suppose that T is defined on C^n (with the usual inner product) by T(z1,z2,...,zn) = (0,z1,z2,...,zn−1). Give a formula for T*. 1B: Show that λ is an eigenvalue of T if and only if λ is an eigenvalue of T*.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT