In: Chemistry
From the following heats of combustion,
CH3OH(l) + 3/2O2(g) → CO2(g) + 2H2O(l)
ΔHorxn=
–726.4 kJ/mol
C(graphite) + O2(g) → CO2(g) ΔHorxn = –393.5 kJ/mol
H2(g) + ½O2(g) → H2O(l) ΔHorxn = –285.8 kJ/mol
Calculate the enthalpy of formation of methanol (CH3OH) from its elements.
C(graphite) + 2H2(g) + ½O2(g) → CH3OH(l)
Number equations 1,2,3
Now,
Invert EQN1
CO2(g) + 2H2O(l) → CH3OH(l) + 3/2O2(g) ΔHorxn = +726.4 kJ/mol
Multiply EQN3 by 2
2H2(g) + O2(g) → 2H2O(l) ΔHorxn = 2*(–285.8 kJ/mol) = -571.+6 kJ/mol
ADd equations
CO2(g) + 2H2O(l) → CH3OH(l) + 3/2O2(g) ΔHorxn = +726.4 kJ/mol
2H2(g) + O2(g) → 2H2O(l) ΔHorxn = 2*(–285.8 kJ/mol) = -571.+6 kJ/mol
CO2(g) + 2H2O(l) + 2H2(g) + O2(g) --> CH3OH(l) + 3/2O2(g) + 2H2O(l) ΔHorxn = +154.8 kJ/mol
Cancel common terms
CO2(g) + + 2H2(g) --> CH3OH(l) + 1/2O2(g) ΔHorxn = +154.8 kJ/mol
Now, add EQN3
C(graphite) + O2(g) → CO2(g) ΔHorxn = –393.5 kJ/mol
add both equations
CO2(g) + + 2H2(g) --> CH3OH(l) + 1/2O2(g) ΔHorxn = +154.8 kJ/mol
C(graphite) + O2(g) → CO2(g) ΔHorxn = –393.5 kJ/mol
CO2(g) + + 2H2(g) + C(graphite) + O2(g) --> CH3OH(l) + 1/2O2(g) +CO2(g) ΔHorxn = -238.7 kJ/mol
cancel terms
2H2(g) + C(graphite) + 1/2O2(g) --> CH3OH(l) ΔHorxn = -238.7 kJ/mol
NOTE that Hf of C = 0 so...
2H2(g) + 1/2O2(g) --> CH3OH(l) ΔHorxn = -238.7 kJ/mol
Which is what we wanted :)