Question

In: Chemistry

Consider the combustion of propane gas, C3H8(g) + 5O2(g) 3CO2(g) + 4H2O(l) Ho = -2,220 kJ/mol...

Consider the combustion of propane gas, C3H8(g) + 5O2(g) 3CO2(g) + 4H2O(l) Ho = -2,220 kJ/mol Propane (just C3H8) is often used for gas grills. Anyone who has every filled or moved those tanks knows they can get pretty heavy. a) How many grams of propane are in 1 pounds of propane? Use the conversion 1 lb = 454 g. (Express your answers for the next three questions in scientific notation. For example use 2.3e-5 to indicate a number such as 2.3 x 10-5.) grams b) How many moles of propane are in 1 pounds of propane? moles c)How much heat can be obtained by burning 1 pounds of propane? (Remember to look at this from the viewpoint of the surroundings, since the question asks how much heat can be OBTAINED.) kJ What is the enthalpy change for 12 CO2(g) + 16 H2O(l) 4 C3H8(g) + 20 O2(g) (Hint: compare this equation to the combustion equation for propane.

_kJ

Solutions

Expert Solution


Related Solutions

Propane gas, C3H8, reacts with oxygen to produce water and carbon dioxide. C3H8(g)+5O2(g)→3CO2(g)+4H2O(l) Part A How...
Propane gas, C3H8, reacts with oxygen to produce water and carbon dioxide. C3H8(g)+5O2(g)→3CO2(g)+4H2O(l) Part A How many moles of CO2 form when 3.70 mol of C3H8 completely reacts? Part B How many grams of CO2 are produced from 17.4 g of propane gas? Part C How many grams of CO2 can be produced when 43.4 g of C3H8 reacts?
Propane, C3H8, is used in many instances to produce heat by burning: C3H8(g) + 5O2(g) →...
Propane, C3H8, is used in many instances to produce heat by burning: C3H8(g) + 5O2(g) → 3CO2(g) + 4H2O(g) The standard enthalpy of reaction, ΔHrxn, is −2,044 kJ. ΔHrxn is a symbol or the heat of reaction. A swimming pool is 35 meters long, 4 meters deep and 15 meters wide is filled with water. The temperature of the water is 20°C, but the owner of the pool would like the temperature to be 30°C. How many grams of propane...
Part1: C3H8(g)+5O2(g)→3CO2(g)+4H2O(g) ΔH∘rxn=−2044kJ A)ΔSsys>0 or B) ΔSsys<0 Part 2: A)ΔSsurr>0 or B)ΔSsurr<0 Part 3) A)The reaction...
Part1: C3H8(g)+5O2(g)→3CO2(g)+4H2O(g) ΔH∘rxn=−2044kJ A)ΔSsys>0 or B) ΔSsys<0 Part 2: A)ΔSsurr>0 or B)ΔSsurr<0 Part 3) A)The reaction is spontaneous at all temperatures. B)The reaction is spontaneous at high temperatures. C)The reaction is spontaneous at low temperatures. D)The reaction is nonspontaneous at all temperatures. Part 4) N2(g)+O2(g)→2NO(g) ΔH∘rxn=+182.6kJ A)ΔSsys>0 or B) ΔSsys<0 Part 5) A)ΔSsurr>0 or B)ΔSsurr<0 Part 6) A)The reaction is spontaneous at all temperatures. B)The reaction is spontaneous at high temperatures. C)The reaction is spontaneous at low temperatures. D)The reaction...
What is the mass of propane, C3H8, in a 50.0 L container of the gas at...
What is the mass of propane, C3H8, in a 50.0 L container of the gas at STP?
The combustion reaction of propane is as follows. C3H8(g) + 5 O2(g) → 3 CO2(g) +...
The combustion reaction of propane is as follows. C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(l) Using Hess's law and the reaction enthalpies given below, find the change in enthalpy for this reaction. Answer in KJ/mol reaction (1):     C(s) + O2(g) → CO2(g)     ΔH = −393.5 kJ/mol reaction (2):     H2(g) + 1/2 O2(g) → H2O(l)     ΔH = −285.8 kJ/mol reaction (3):     3 C(s) + 4 H2(g) → C3H8(g)     ΔH = −103.8 kJ/mol
At 25°C, the standard enthalpy of combustion of gaseous propane (C3H8) is –2219.0 kJ per mole...
At 25°C, the standard enthalpy of combustion of gaseous propane (C3H8) is –2219.0 kJ per mole of propane, and the standard enthalpy of combustion of gaseous propylene (C3H6) is –2058.3 kJ per mole of propylene. What is the standard enthalpy change for the following reaction at 25°C? C3H6(g) + H2(g) → C3H8(g) Substance ∆H°f (kJ/mol) CO2(g) –393.5 H2O(l) –285.8 a) +160.7 kJ b) –160.7 kJ c) +104.7 kJ d) –20.4 kJ e) –125.1 kJ
A 16.0 gram sample of propane gas (C3H8) is burned according to the equation C3H8(g) +...
A 16.0 gram sample of propane gas (C3H8) is burned according to the equation C3H8(g) + 5O2(g) → 3CO2(g) + 4H2O(g). In an enclosed container with a volume of 2.25L at a temperature of 322K. If the sample of propane burns completely and no oxygen remains in the container, calculate the mole fractions of CO2 and H2O. Calculate the total pressure in the container after the reaction. Calculate the partial pressure of CO2 and H2O in the container after the...
From the following heats of combustion, CH3OH(l) + 3/2O2(g) → CO2(g) + 2H2O(l)        ΔHorxn= –726.4 kJ/mol...
From the following heats of combustion, CH3OH(l) + 3/2O2(g) → CO2(g) + 2H2O(l)        ΔHorxn= –726.4 kJ/mol C(graphite) + O2(g) → CO2(g)                               ΔHorxn = –393.5 kJ/mol H2(g) + ½O2(g) → H2O(l)                                                  ΔHorxn = –285.8 kJ/mol Calculate the enthalpy of formation of methanol (CH3OH) from its elements. C(graphite) + 2H2(g) + ½O2(g) → CH3OH(l)
Liquid Propane (C3H8(l)) enters a combustion chamber at 25 degrees C and 1 atm at a...
Liquid Propane (C3H8(l)) enters a combustion chamber at 25 degrees C and 1 atm at a rate of 0.4 kg/min where it is mixed and burned with 150% excess air that enters the combustion chamber at 25 degrees C. The heat transfer from the combustion process is 53 kW. Determine (c) the average specific heat at constant pressure of the product gasses, and (d) the temperature of the products of combustion.
Propane (C3H8) is often used for barbeque and heating. (a) Determine the density (in g/L) of...
Propane (C3H8) is often used for barbeque and heating. (a) Determine the density (in g/L) of propane at STP assuming propane behaves as an ideal gas. (b) Determine the density (in g/L) of propane at 21.1oC and 0.912 atm assuming propane behaves as an ideal gas.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT