Question

In: Advanced Math

Let S be a non-empty set (finite or otherwise) and Σ the group of permutations on...

Let S be a non-empty set (finite or otherwise) and Σ the group of permutations on S. Suppose ∼ is an equivalence relation on S. Prove (a) {ρ ∈ Σ : x ∼ ρ(x) (∀x ∈ S)} is a subgroup of Σ. (b) The elements ρ ∈ Σ for which, for every x and y in S, ρ(x) ∼ ρ(y) if and only if x ∼ y is a subgroup of Σ.

Solutions

Expert Solution


Related Solutions

Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?
Let S be the set of natural numbers which can be written as a non-empty string...
Let S be the set of natural numbers which can be written as a non-empty string of ones followed by a non-empty string of zeroes. For example, 10, 111100 and 11100000 are all in S, but 11 and 1110011 are not in S. Prove that there exists a natural number n∈S, such that 2018 | n.
Let G be a group acting on a set S, and let H be a group...
Let G be a group acting on a set S, and let H be a group acting on a set T. The product group G × H acts on the disjoint union S ∪ T as follows. For all g ∈ G, h ∈ H, s ∈ S and t ∈ T, (g, h) · s = g · s, (g, h) · t = h · t. (a) Consider the groups G = C4, H = C5, each acting...
(The “conjugation rewrite lemma”.) Let σ and τ be permutations. (a) Show that if σ maps...
(The “conjugation rewrite lemma”.) Let σ and τ be permutations. (a) Show that if σ maps x to y then στ maps τ(x) to τ(y). (b) Suppose that σ is a product of disjoint cycles. Show that στ has the same cycle structure as σ; indeed, wherever (... x y ...) occurs in σ, (... τ(x) τ(y) ...) occurs in στ.
Let X be a non-empty set and R⊆X × X be an equivalence relation. Prove that...
Let X be a non-empty set and R⊆X × X be an equivalence relation. Prove that X / R is a partition of X.
let R be a ring; X a non-empty set and (F(X, R), +, *) the ring...
let R be a ring; X a non-empty set and (F(X, R), +, *) the ring of the functions from X to R. Show directly the associativity of the multiplication of F(X, R). Assume that R is unital and commutative. show that F(X, R) is also unital and commutative.
Let V be a finite dimensional vector space over R. If S is a set of...
Let V be a finite dimensional vector space over R. If S is a set of elements in V such that Span(S) = V , what is the relationship between S and the basis of V ?
Let X be a non-empty set and P(X) its power set. Then (P(x), symetric difference, intersection)...
Let X be a non-empty set and P(X) its power set. Then (P(x), symetric difference, intersection) is a ring. Find a non-trivial ideal of P(X).
Let G be a finite group and H a subgroup of G. Let a be an...
Let G be a finite group and H a subgroup of G. Let a be an element of G and aH = {ah : h is an element of H} be a left coset of H. If b is an element of G as well and the intersection of aH bH is non-empty then aH and bH contain the same number of elements in G. Thus conclude that the number of elements in H, o(H), divides the number of elements...
Let a be an element of a finite group G. The order of a is the...
Let a be an element of a finite group G. The order of a is the least power k such that ak = e. Find the orders of following elements in S5 a. (1 2 3 ) b. (1 3 2 4) c. (2 3) (1 4) d. (1 2) (3 5 4)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT