Question

In: Advanced Math

Let V be a finite dimensional vector space over R. If S is a set of...

Let V be a finite dimensional vector space over R. If S is a set of elements in V such that Span(S) = V ,

what is the relationship between S and the basis of V ?

Solutions

Expert Solution

The relationship between S and the basis of V is either S or proper subset of S is a basis of V.There exist a basis for every finitely generated vector space V.The proof is given below.

Proof. Case 1. Let V be a finitely generated vector space other than
the null space.
Let S = {a1, a2, ...,an} be a finite set of generators of V. If S is
linearly independent in V, then S itself is a basis of V and the theorem
is done.
If S is linearly dependent, then we can delete, by Deletion theorem,
at least one vector from S and obtain a proper subset S1 (of S) spanning
the same space V. If S1 is linearly independent in V, then S1 is a basis
of V and the theorem is done.
If S, be not linearly independent then we repeat the process of dele-
tion and finally obtain, after k(<n) steps of deletion, a subset Sk which
is linearly independent in V and which also spans V.
This is possible, because S is a finite set of n elements and in the
extreme unfavourable case we can come, after n - 1 steps of deletion, to
a subset Sn-1 containing only one non-zero vector that generates V and
that is linearly independent.
Therefore our assertion that S is a linearly independent set for some
k(<n) is true and hence it is a basis of V.
Case 2. Let V = {0}, 0 is the null vector of V. Since the null(/void set which is denoted by Φ) set is linearly independent and
L(Φ) = {0}, Φ is a basis of V.
This completes the proof.


Related Solutions

Let V be a finite-dimensional vector space over C and T in L(V). Prove that the...
Let V be a finite-dimensional vector space over C and T in L(V). Prove that the set of zeros of the minimal polynomial of T is exactly the same as the set of the eigenvalues of T.
Let T be a linear operator on a finite-dimensional complex vector space V . Prove that...
Let T be a linear operator on a finite-dimensional complex vector space V . Prove that T is diagonalizable if and only if for every λ ∈ C, we have N(T − λIV ) = N((T − λIV )2).
Let T be an operator on a finite-dimensional complex vector space V, and suppose that dim...
Let T be an operator on a finite-dimensional complex vector space V, and suppose that dim Null T = 3, dimNullT2 =6. Prove that T does not have a square root; i.e. there does not exist any S ∈ L (V) such that S2 = T.
Let V and W be finite dimensional vector spaces over a field F with dimF(V )...
Let V and W be finite dimensional vector spaces over a field F with dimF(V ) = dimF(W ) and let T : V → W be a linear map. Prove there exists an ordered basis A for V and an ordered basis B for W such that [T ]AB is a diagonal matrix where every entry along the diagonal is either a 0 or a 1.
suppose that T : V → V is a linear map on a finite-dimensional vector space...
suppose that T : V → V is a linear map on a finite-dimensional vector space V such that dim range T = dim range T2. Show that V = range T ⊕null T. (Hint: Show that null T = null T2, null T ∩ range T = {0}, and apply the fundamental theorem of linear maps.)
Question 1. Let V and W be finite dimensional vector spaces over a field F with...
Question 1. Let V and W be finite dimensional vector spaces over a field F with dimF(V ) = dimF(W) and let T : V → W be a linear map. Prove there exists an ordered basis A for V and an ordered basis B for W such that [T] A B is a diagonal matrix where every entry along the diagonal is either a 0 or a 1. Hint 1. Suppose A = {~v1, . . . , ~vn}...
(10pt) Let V and W be a vector space over R. Show that V × W...
(10pt) Let V and W be a vector space over R. Show that V × W together with (v0,w0)+(v1,w1)=(v0 +v1,w0 +w1) for v0,v1 ∈V, w0,w1 ∈W and λ·(v,w)=(λ·v,λ·w) for λ∈R, v∈V, w∈W is a vector space over R. (5pt)LetV beavectorspaceoverR,λ,μ∈R,andu,v∈V. Provethat (λ+μ)(u+v) = ((λu+λv)+μu)+μv. (In your proof, carefully refer which axioms of a vector space you use for every equality. Use brackets and refer to Axiom 2 if and when you change them.)
1. Let V be real vector space (possibly infinite-dimensional), S, T ∈ L(V ), and S...
1. Let V be real vector space (possibly infinite-dimensional), S, T ∈ L(V ), and S be in- vertible. Prove λ ∈ C is an eigenvalue of T if and only if λ is an eigenvalue of STS−1. Give a description of the set of eigenvectors of STS−1 associated to an eigenvalue λ in terms of the eigenvectors of T associated to λ. Show that there exist square matrices A, B that have the same eigenvalues, but aren’t similar. Hint:...
1. Let ? be a finite dimensional vector space with basis {?1,...,??} and ? ∈ L(?)....
1. Let ? be a finite dimensional vector space with basis {?1,...,??} and ? ∈ L(?). Show the following are equivalent: (a) The matrix for ? is upper triangular. (b) ?(??) ∈ Span(?1,...,??) for all ?. (c) Span(?1,...,??) is ?-invariant for all ?. please also explain for (a)->(b) why are all the c coefficients 0 for all i>k? and why T(vk) in the span of (v1,.....,vk)? i need help understanding this.
Proof: Let S ⊆ V be a subset of a vector space V over F. We...
Proof: Let S ⊆ V be a subset of a vector space V over F. We have that S is linearly dependent if and only if there exist vectors v1, v2, . . . , vn ∈ S such that vi is a linear combination of v1, v2, . . . , vi−1, vi+1, . . . , vn for some 1 ≤ i ≤ n.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT