Question

In: Advanced Math

Let X be a non-empty set and R⊆X × X be an equivalence relation. Prove that...

Let X be a non-empty set and R⊆X × X be an equivalence relation. Prove that X / R is a partition of X.

Solutions

Expert Solution


Related Solutions

let R be a ring; X a non-empty set and (F(X, R), +, *) the ring...
let R be a ring; X a non-empty set and (F(X, R), +, *) the ring of the functions from X to R. Show directly the associativity of the multiplication of F(X, R). Assume that R is unital and commutative. show that F(X, R) is also unital and commutative.
Let x be a set and let R be a relation on x such x is...
Let x be a set and let R be a relation on x such x is simultaneously reflexive, symmetric, and antisymmetric. Prove equivalence relation.
Question 1. Equivalence Relation 1 Define a relation R on by iff . Prove that R...
Question 1. Equivalence Relation 1 Define a relation R on by iff . Prove that R is an equivalence relation, that is, prove that it is reflexive, symmetric, and transitive. Determine the equivalence classes of this relation. What members are in the class [2]? How many members do the equivalence classes have? Do they all have the same number of members? How many equivalence classes are there? Question 2. Equivalence Relation 2 Consider the relation from last week defined as:...
Let R and S be equivalence relations on a set X. Which of the following are...
Let R and S be equivalence relations on a set X. Which of the following are necessarily equivalence relations? (1)R ∩ S (2)R \ S . Please show me the proof. Thanks!
Show that the given relation R is an equivalence relation on set S. Then describe the...
Show that the given relation R is an equivalence relation on set S. Then describe the equivalence class containing the given element z in S, and determine the number of distinct equivalence classes of R. Let S be the set of all possible strings of 3 or 4 letters, let z = ABCD and define x R y to mean that x has the same first letter as y and also the same third letter as y.
Let X be a finite set. Describe the equivalence relation having the greatest number of distinct...
Let X be a finite set. Describe the equivalence relation having the greatest number of distinct equivalence classes, and the one with the smallest number of equivalence classes.
Let X be a non-empty set and P(X) its power set. Then (P(x), symetric difference, intersection)...
Let X be a non-empty set and P(X) its power set. Then (P(x), symetric difference, intersection) is a ring. Find a non-trivial ideal of P(X).
Let R[x, y] be the set of polynomials in two coefficients. Prove that R[x, y] is...
Let R[x, y] be the set of polynomials in two coefficients. Prove that R[x, y] is a vector space over R. A polynomial f(x, y) is called degree d homogenous polynomial if the combined degree in x and y of each term is d. Let Vd be the set of degree d homogenous polynomials from R[x, y]. Is Vd a subspace of R[x, y]? Prove your answer.
Let G be a simple graph. Prove that the connection relation in G is an equivalence...
Let G be a simple graph. Prove that the connection relation in G is an equivalence relation on V (G)
Prove that \strongly connected" is an equivalence relation on the vertex set of a directed graph
Prove that \strongly connected" is an equivalence relation on the vertex set of a directed graph
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT