Question

In: Advanced Math

Let X be a non-empty set and R⊆X × X be an equivalence relation. Prove that...

Let X be a non-empty set and R⊆X × X be an equivalence relation. Prove that X / R is a partition of X.

Solutions

Expert Solution


Related Solutions

let R be a ring; X a non-empty set and (F(X, R), +, *) the ring...
let R be a ring; X a non-empty set and (F(X, R), +, *) the ring of the functions from X to R. Show directly the associativity of the multiplication of F(X, R). Assume that R is unital and commutative. show that F(X, R) is also unital and commutative.
Let x be a set and let R be a relation on x such x is...
Let x be a set and let R be a relation on x such x is simultaneously reflexive, symmetric, and antisymmetric. Prove equivalence relation.
Question 1. Equivalence Relation 1 Define a relation R on by iff . Prove that R...
Question 1. Equivalence Relation 1 Define a relation R on by iff . Prove that R is an equivalence relation, that is, prove that it is reflexive, symmetric, and transitive. Determine the equivalence classes of this relation. What members are in the class [2]? How many members do the equivalence classes have? Do they all have the same number of members? How many equivalence classes are there? Question 2. Equivalence Relation 2 Consider the relation from last week defined as:...
Let R and S be equivalence relations on a set X. Which of the following are...
Let R and S be equivalence relations on a set X. Which of the following are necessarily equivalence relations? (1)R ∩ S (2)R \ S . Please show me the proof. Thanks!
Let X be a finite set. Describe the equivalence relation having the greatest number of distinct...
Let X be a finite set. Describe the equivalence relation having the greatest number of distinct equivalence classes, and the one with the smallest number of equivalence classes.
Let X be a non-empty set and P(X) its power set. Then (P(x), symetric difference, intersection)...
Let X be a non-empty set and P(X) its power set. Then (P(x), symetric difference, intersection) is a ring. Find a non-trivial ideal of P(X).
Let R[x, y] be the set of polynomials in two coefficients. Prove that R[x, y] is...
Let R[x, y] be the set of polynomials in two coefficients. Prove that R[x, y] is a vector space over R. A polynomial f(x, y) is called degree d homogenous polynomial if the combined degree in x and y of each term is d. Let Vd be the set of degree d homogenous polynomials from R[x, y]. Is Vd a subspace of R[x, y]? Prove your answer.
Let G be a simple graph. Prove that the connection relation in G is an equivalence...
Let G be a simple graph. Prove that the connection relation in G is an equivalence relation on V (G)
Prove that \strongly connected" is an equivalence relation on the vertex set of a directed graph
Prove that \strongly connected" is an equivalence relation on the vertex set of a directed graph
7. Prove that congruence modulo 10 is an equivalence relation on the set of integers. What...
7. Prove that congruence modulo 10 is an equivalence relation on the set of integers. What do the equivalence classes look like?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT