In: Math
The following eight observations were drawn from a normal population whose variance is 100:
12
8
22
15
30
6
29
58
Part A
What is the standard error of the sample mean, based on the known population variance? Give your answer to two decimal places in the form x.xx
Standard error:
Part B
Find the lower and upper limits of a 90% confidence interval for the population mean. Give your answer to two decimal places in the form xx.xx
Lower limit:
Upper limit:
Part C
True or false:
If the population was not normally distributed the confidence interval calculation above would not be valid. Answer by writing T or F in the space provided.
Answer:
a)
σ = √100 = 10
Standard Error , SE = σ/√n = 10 / √ 8 = 3.54
b)
Sample Size ,   n =    8
Sample Mean,    x̅ = ΣX/n =    22.5000
Level of Significance ,    α =   
0.1          
'   '   '      
   
z value=   z α/2=   1.6449   [Excel
formula =NORMSINV(α/2) ]      
          
       
Standard Error , SE = σ/√n =   10.000   /
√   8   =   3.5355
margin of error, E=Z*SE =   1.6449  
*   3.536   =   5.815
          
       
confidence interval is       
           
Interval Lower Limit = x̅ - E =    22.50  
-   5.815   =   16.685
Interval Upper Limit = x̅ + E =    22.50  
-   5.815   =   28.315
90%   confidence interval is (  
16.68   < µ <   28.32  
)
c)
True - T