Question

In: Mechanical Engineering

3.- In an industrial process, a concentric tube exchanger is used to cool 1800 Kg /...

3.- In an industrial process, a concentric tube exchanger is used to cool 1800 Kg / hr of ammonia from 80 ° C to 35 ° C circulating through the annular space, with 1485 Kg / hr of water entering the concentric tube at 25 ° C. The water leaving the exchanger is sent to a mixing tank with agitation, which is fed by another stream of water at 15 ° C in order to reduce its temperature to 25 ° C and reuse it in the heat exchanger. Considering that the specific heat of ammonia is a function of temperature, how many Kg / hr should water be supplied to the mixing tank at 15 ° C?

Solutions

Expert Solution

Heat exchanger problem is solved by energy balance.

Since specific heat of ammonia is vary with temperature.so, specific heat of ammonia is taken as mean of inlet and outlet temperature.


Related Solutions

A counterflow, concentric tube heat exchanger used for engine cooling has been in service for an...
A counterflow, concentric tube heat exchanger used for engine cooling has been in service for an extended period of time. The heat transfer surface area of the exchanger is 5 m2, and the design value of the overall convection coefficient (without any fouling) is 38 W/m2K. During a test run, engine oil flowing at 0.1 kg/s is cooled from 110oC to 66oC by water supplied at a temperature of 25oC and a flow rate of 0.18 kg/s. Determine whether fouling...
A counterflow, concentric tube heat exchanger used for engine cooling has been in service for an...
A counterflow, concentric tube heat exchanger used for engine cooling has been in service for an extended period of time. The heat transfer surface area of the exchanger is 5 m2, and the design value of the overall convection coefficient (without any fouling) is 38 W/m2K. During a test run, engine oil flowing at 0.1 kg/s is cooled from 110oC to 66oC by water supplied at a temperature of 25oC and a flow rate of 0.18 kg/s. Determine whether fouling...
An industrial process is using river water to cool 105 kg/h of saturated steam in a...
An industrial process is using river water to cool 105 kg/h of saturated steam in a heat exchanger at 0.1 bar. The cooled steam exits the heat exchanger as a saturated liquid at the same pressure of 0.1 bar to be used in the process. The river water has a volumetric flow rate of 500 ft3/s and is the coolant in the heat exchanger., having properties close to pure water (i.e., density – 1000 kg/m3). It exists the heat exchanger...
Design a concentric tube heat exchanger (in co-current configuration) to heat 1000 cm3/ min of water...
Design a concentric tube heat exchanger (in co-current configuration) to heat 1000 cm3/ min of water from 30oC to 45oC flowing in the shell, using water at 65oC flowing in the tube. The heating water should not exit with temperature above 55oC. Choose a suitable range of inner pipe (copper material) diameters for heat exchanger, assume suitable inner tube thickness and outer tube diameter and show selection of parameters and dimensions for an optimum design.
liquid oil is used in the tube side of a shell-and-tube heat exchanger with two shell...
liquid oil is used in the tube side of a shell-and-tube heat exchanger with two shell passes and four tube passes. water is heated in the shell side from 10°C to 50°C while the oil is cooled from 90°C to 60°C. the overall heat transfer coefficient is 53 W/m^2*K. the specific heat of the oil is 2.0 kJ/kg*K. Using the NTU - effectiveness method, calculate the area of the heat exchanger for a total energy transfer of 500 kW. what...
A shell-and-tube heat exchanger is to used to heat water (in the tube side) from 30...
A shell-and-tube heat exchanger is to used to heat water (in the tube side) from 30 deg C to 40 deg C at a mass flow rate of 4 kg/s. The fluid used for heating (shell side) is water entering at 90 deg C with a mass flow rate of 2 kg/s. A 1-2 STHE is used and the overall heat transfer coefficient based on the inside area is 1390 W/m2-K. The tubes are 1.875 in diameter (inside) and require...
In a pipe heat exchanger, crude oil on 30 ℃ is used to cool the heavy...
In a pipe heat exchanger, crude oil on 30 ℃ is used to cool the heavy oil from 180℃ to 120℃.Mass flow of heavy oil is Wh=104kg / h,and crude oil respectively Wc=1.3×104kg/h. Specific heat, respectively is Cph=2.2 kJ/(kg•℃), Cpc=1.9 kJ/(kg•℃). Overall heat transfer coefficient K=120W/(m2•K). Try to calculate the required heat transfer area for parallel flow and countercurrent flow.
A shell-and-tube heat exchanger with two tube passes and baffled single shell pass is used as...
A shell-and-tube heat exchanger with two tube passes and baffled single shell pass is used as oil cooler. Cooling water at 20°C flows through the tubes at a flow rate of 4.082 kg/s. Engine oil enters the shell side at a flow rate of 10 kg/s. The inlet and outlet temperatures of oil are 90°C and 60°C, respectively. The overall heat transfer coefficient based on the outside tube area (Uo) is 262 W/m2⋅K. The specific heats of water and oil...
What is the process occurring inside the Shell and Tube Heat Exchanger and what is the...
What is the process occurring inside the Shell and Tube Heat Exchanger and what is the driving force?
A 2-shell passes and 4-tube passes heat exchanger is used to heat process stream from 35°C...
A 2-shell passes and 4-tube passes heat exchanger is used to heat process stream from 35°C to 80°C by hot water available at 90°C, which enters the thin-walled 2.5-cm-diameter tube with total length of 65 m. The convection heat transfer coefficient is 76 W/m2 .°C on the process stream (shell) side and 190 W/m2 .°C on the water (tube) side. For a desired factor, FT = 0.95 a) Determine the rate of heat transfer in the heat exchanger. b) Consider...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT