Question

In: Mechanical Engineering

A counterflow, concentric tube heat exchanger used for engine cooling has been in service for an...

A counterflow, concentric tube heat exchanger used for engine cooling has been in service for an extended period of time. The heat transfer surface area of the exchanger is 5 m2, and the design value of the overall convection coefficient (without any fouling) is 38 W/m2K. During a test run, engine oil flowing at 0.1 kg/s is cooled from 110oC to 66oC by water supplied at a temperature of 25oC and a flow rate of 0.18 kg/s. Determine whether fouling has occurred during the service period. If so, calculate the fouling factor, Rf (m2K/W). Specific heat of engine oil is 2166 J/kgK, and water is 4178 J/kgK.

What is Rf = x 10-3 m2K/W?

Solutions

Expert Solution


Related Solutions

A counterflow, concentric tube heat exchanger used for engine cooling has been in service for an...
A counterflow, concentric tube heat exchanger used for engine cooling has been in service for an extended period of time. The heat transfer surface area of the exchanger is 5 m2, and the design value of the overall convection coefficient (without any fouling) is 38 W/m2K. During a test run, engine oil flowing at 0.1 kg/s is cooled from 110oC to 66oC by water supplied at a temperature of 25oC and a flow rate of 0.18 kg/s. Determine whether fouling...
In the two-tube heat exchanger with the same axis used as engine oil cooler, cold water...
In the two-tube heat exchanger with the same axis used as engine oil cooler, cold water enters the steel pipe with inner/outer diameter of 25/30 mm (K= 55 W/mK) entering with at 15°C temperature, 0.5 m/s speed and comes out at 25°C temperature. Hot oil enters the steel pipe with inner/outer diameter of 40/46 mm with a speed of 0.25 m/s at 60°C temperature. According to the oil is required to be cooled at 5°C; A) Find the pipe length...
Design a concentric tube heat exchanger (in co-current configuration) to heat 1000 cm3/ min of water...
Design a concentric tube heat exchanger (in co-current configuration) to heat 1000 cm3/ min of water from 30oC to 45oC flowing in the shell, using water at 65oC flowing in the tube. The heating water should not exit with temperature above 55oC. Choose a suitable range of inner pipe (copper material) diameters for heat exchanger, assume suitable inner tube thickness and outer tube diameter and show selection of parameters and dimensions for an optimum design.
A shell-and-tube heat exchanger is to used to heat water (in the tube side) from 30...
A shell-and-tube heat exchanger is to used to heat water (in the tube side) from 30 deg C to 40 deg C at a mass flow rate of 4 kg/s. The fluid used for heating (shell side) is water entering at 90 deg C with a mass flow rate of 2 kg/s. A 1-2 STHE is used and the overall heat transfer coefficient based on the inside area is 1390 W/m2-K. The tubes are 1.875 in diameter (inside) and require...
3.- In an industrial process, a concentric tube exchanger is used to cool 1800 Kg /...
3.- In an industrial process, a concentric tube exchanger is used to cool 1800 Kg / hr of ammonia from 80 ° C to 35 ° C circulating through the annular space, with 1485 Kg / hr of water entering the concentric tube at 25 ° C. The water leaving the exchanger is sent to a mixing tank with agitation, which is fed by another stream of water at 15 ° C in order to reduce its temperature to 25...
A shell-and-tube heat exchanger uses cooling water in the tubes. There are two pressure gages installed...
A shell-and-tube heat exchanger uses cooling water in the tubes. There are two pressure gages installed on the the water side to the heat exchanger. Gage 1 (P1) is installed on the inlet water line, which is connected to the lower nozzle, while Gage (P2) is installed on the discharge water line, which is connected to the upper nozzle. Both pressure gages are very near the nozzle flanges. The pressure drop from each pressure gage to the exchanger channel is...
liquid oil is used in the tube side of a shell-and-tube heat exchanger with two shell...
liquid oil is used in the tube side of a shell-and-tube heat exchanger with two shell passes and four tube passes. water is heated in the shell side from 10°C to 50°C while the oil is cooled from 90°C to 60°C. the overall heat transfer coefficient is 53 W/m^2*K. the specific heat of the oil is 2.0 kJ/kg*K. Using the NTU - effectiveness method, calculate the area of the heat exchanger for a total energy transfer of 500 kW. what...
A shell-and-tube heat exchanger with two tube passes and baffled single shell pass is used as...
A shell-and-tube heat exchanger with two tube passes and baffled single shell pass is used as oil cooler. Cooling water at 20°C flows through the tubes at a flow rate of 4.082 kg/s. Engine oil enters the shell side at a flow rate of 10 kg/s. The inlet and outlet temperatures of oil are 90°C and 60°C, respectively. The overall heat transfer coefficient based on the outside tube area (Uo) is 262 W/m2⋅K. The specific heats of water and oil...
A shell and tube heat exchanger is to be desined by kern's method to heat Toluene....
A shell and tube heat exchanger is to be desined by kern's method to heat Toluene. Toulene: T(in)=100F, T(out)=257F, flowrate=125000Ib/hr P(in)=90Psia composition:100% Toluene. Styrene: T(in)=300F, T(out)=176F, P(in)=50psia composition:100% Styrene What is the mass flow rate of Styrene? Which fluid should be in the shell side and which should be in the tube side and why?
Heat transfer In a test in a double tube heat exchanger the following data are obtained...
Heat transfer In a test in a double tube heat exchanger the following data are obtained For hot fluid Flow = 11.6 gal / sec Outlet temperature = 30.1 ° C Inlet temperature = 32 ° C For cold fluid Flow 11gal / min Outlet temperature 25.1 ° C Inlet temperature 24.2 ° C For the fluid consider k = 0.49 w / mK cp = 3729.95 J / kgK Prandtl number = 14.29 Density = 1035.02kg / m3 Get:...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT