Question

In: Mechanical Engineering

Design a concentric tube heat exchanger (in co-current configuration) to heat 1000 cm3/ min of water...

Design a concentric tube heat exchanger (in co-current configuration) to heat 1000 cm3/ min of water from 30oC to 45oC flowing in the shell, using water at 65oC flowing in the tube. The heating water should not exit with temperature above 55oC. Choose a suitable range of inner pipe (copper material) diameters for heat exchanger, assume suitable inner tube thickness and outer tube diameter and show selection of parameters and dimensions for an optimum design.

Solutions

Expert Solution


Related Solutions

A counterflow, concentric tube heat exchanger is used to cool the lubricating oil for a large...
A counterflow, concentric tube heat exchanger is used to cool the lubricating oil for a large industrial gas turbine engine. The flow rate of cooling water through the inner tube (Di = 25 mm) is 0.2 kg/s, while the flow rate of oil through the outer annulus (Do = 45 mm) is 0.1 kg/s. The oil and water enter at temperatures of 100 and 30 C, respectively. How long must the tube be made if the outlet temperature of the...
A shell-and-tube heat exchanger is to used to heat water (in the tube side) from 30...
A shell-and-tube heat exchanger is to used to heat water (in the tube side) from 30 deg C to 40 deg C at a mass flow rate of 4 kg/s. The fluid used for heating (shell side) is water entering at 90 deg C with a mass flow rate of 2 kg/s. A 1-2 STHE is used and the overall heat transfer coefficient based on the inside area is 1390 W/m2-K. The tubes are 1.875 in diameter (inside) and require...
A counterflow, concentric tube heat exchanger used for engine cooling has been in service for an...
A counterflow, concentric tube heat exchanger used for engine cooling has been in service for an extended period of time. The heat transfer surface area of the exchanger is 5 m2, and the design value of the overall convection coefficient (without any fouling) is 38 W/m2K. During a test run, engine oil flowing at 0.1 kg/s is cooled from 110oC to 66oC by water supplied at a temperature of 25oC and a flow rate of 0.18 kg/s. Determine whether fouling...
A counterflow, concentric tube heat exchanger used for engine cooling has been in service for an...
A counterflow, concentric tube heat exchanger used for engine cooling has been in service for an extended period of time. The heat transfer surface area of the exchanger is 5 m2, and the design value of the overall convection coefficient (without any fouling) is 38 W/m2K. During a test run, engine oil flowing at 0.1 kg/s is cooled from 110oC to 66oC by water supplied at a temperature of 25oC and a flow rate of 0.18 kg/s. Determine whether fouling...
Design of Shell and Tube Heat Exchanger Crude oil at 198°C is to be cooled to...
Design of Shell and Tube Heat Exchanger Crude oil at 198°C is to be cooled to 39°C. The oil flow-rate is 6.127 kg/s. Cooling water is available at 29°C and at the rate of 27.127 kg/s. The pressure drop allowance for each stream is 100 kN/m2 . Design a suitable shell and tube heat exchanger for this duty. The following are the properties of the two streams at the average temperature: water crude oil density kg/m3 990 850 viscosity mNm-2...
3.- In an industrial process, a concentric tube exchanger is used to cool 1800 Kg /...
3.- In an industrial process, a concentric tube exchanger is used to cool 1800 Kg / hr of ammonia from 80 ° C to 35 ° C circulating through the annular space, with 1485 Kg / hr of water entering the concentric tube at 25 ° C. The water leaving the exchanger is sent to a mixing tank with agitation, which is fed by another stream of water at 15 ° C in order to reduce its temperature to 25...
A shell and tube heat exchanger is to be desined by kern's method to heat Toluene....
A shell and tube heat exchanger is to be desined by kern's method to heat Toluene. Toulene: T(in)=100F, T(out)=257F, flowrate=125000Ib/hr P(in)=90Psia composition:100% Toluene. Styrene: T(in)=300F, T(out)=176F, P(in)=50psia composition:100% Styrene What is the mass flow rate of Styrene? Which fluid should be in the shell side and which should be in the tube side and why?
What is called Supertargetting in Heat Exchanger Network Design? How Heat Exchanger Network Design can be...
What is called Supertargetting in Heat Exchanger Network Design? How Heat Exchanger Network Design can be done by paying attention to Supertargetting?
A shell-and-tube heat exchanger uses cooling water in the tubes. There are two pressure gages installed...
A shell-and-tube heat exchanger uses cooling water in the tubes. There are two pressure gages installed on the the water side to the heat exchanger. Gage 1 (P1) is installed on the inlet water line, which is connected to the lower nozzle, while Gage (P2) is installed on the discharge water line, which is connected to the upper nozzle. Both pressure gages are very near the nozzle flanges. The pressure drop from each pressure gage to the exchanger channel is...
In the two-tube heat exchanger with the same axis used as engine oil cooler, cold water...
In the two-tube heat exchanger with the same axis used as engine oil cooler, cold water enters the steel pipe with inner/outer diameter of 25/30 mm (K= 55 W/mK) entering with at 15°C temperature, 0.5 m/s speed and comes out at 25°C temperature. Hot oil enters the steel pipe with inner/outer diameter of 40/46 mm with a speed of 0.25 m/s at 60°C temperature. According to the oil is required to be cooled at 5°C; A) Find the pipe length...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT