Question

In: Mechanical Engineering

1 kg of saturated steam at 1000 kPa is in a piston-cylinder and the massless cylinder...

1 kg of saturated steam at 1000 kPa is in a piston-cylinder and the massless cylinder is held in place by pins. The pins are removed and the system suddenly and adiabatically expands to 5x its original volume before the piston hits a pair of upper pins. The expansion takes place against an atmosphere is 60 kPa. What is the final specific internal energy of the system? The answer will be in kJ/kg.

Solutions

Expert Solution

Since mass is 1 kg so both specific and total value will be same.


Related Solutions

A 10 kg steam initially at 2 MPa saturated vapor is inside an insulated piston cylinder....
A 10 kg steam initially at 2 MPa saturated vapor is inside an insulated piston cylinder. The cylinder has a bottom valve. As this valve opens, steam at 800 kPa and 200C exits while the steam inside the tank has 400kPa saturated vapor. Find the exit mass of steam from the cylinder in kg.
Saturated water vapor at 1000 kPa is throttled to 100 kPa. The velocity of the steam...
Saturated water vapor at 1000 kPa is throttled to 100 kPa. The velocity of the steam remains constant through the process. Determine the exit temperature of the water vapor. I know this is already awnsered in a solution for 1st edition but can someone help me understand what they do and how they picked the numbers they did from some table to get the exit temperature?
One kilogram of boiling water is vaporized to steam at 100 kPa in a frictionless piston-and-cylinder...
One kilogram of boiling water is vaporized to steam at 100 kPa in a frictionless piston-and-cylinder device. Using the Steam Tables, answer the following: Is the heat needed to vaporize the water to steam equal to the change in enthalpy? Or TDS? To calculate the work done by the steam, is the first law of thermodynamics equation or the general equation for work applicable? Is the entropy generation equal to the change in entropy of the water? Does the heat...
A piston-cylinder device contains a saturated mixture of steam and water having a total mass of...
A piston-cylinder device contains a saturated mixture of steam and water having a total mass of 0.5 kg at a pressure of 160 kPa and an initial volume of 100 liters. Heat is then added and the fluid expands at constant pressure until it reaches a saturated vapor state. a) Draw a diagram representing the process showing the initial and final states of the system. b) Sketch this process on a P-v diagram with respect to the saturation lines, critical...
A piston-cylinder device initially contains 75 g of saturated water vapor at 310 kPa . A...
A piston-cylinder device initially contains 75 g of saturated water vapor at 310 kPa . A resistance heater is operated within the cylinder with a current of 0.4 A from a 200 Vsource until the volume doubles. At the same time a heat loss of 2 kJ occurs. a.Determine the final temperature (T2). b. Determine the duration of the process. c. What-if scenario: What is the final temperature if the piston-cylinder device initially contains saturated liquid water?
Four kilograms of steam in a piston/cylinder device at 400 kPa and 175 °C undergoes isothermal...
Four kilograms of steam in a piston/cylinder device at 400 kPa and 175 °C undergoes isothermal and mechanically reversible process to a final pressure such that the steam is completely condensed (i.e., became a saturated liquid). Determine Q and W for this process: (b) Using generalized correlations and Equations (6.70 – 6.74). Comment on the accuracy of your answer. [Answer: Q = -9,461 kJ, W = 1494.9 kJ]
A piston-cylinder arrangement containing steam at 200 kPa and 200°C is cooled at a constant volume...
A piston-cylinder arrangement containing steam at 200 kPa and 200°C is cooled at a constant volume of 0.5 m3 until it reaches 140 kPa. (a) Calculate the amount of mass of steam in the cylinder (kg) (b) Find the quality (x) of the steam once it reaches 140 kPa Then the piston is allowed to float freely (maintaining a constant pressure, but changing volume), while 50% of the steam is released from the piston. Once the release is done, you...
A piston–cylinder device initially contains 2 kg water in 1 m3 at 500 kPa. The system...
A piston–cylinder device initially contains 2 kg water in 1 m3 at 500 kPa. The system then cools down and the volume drops to half and pressure of 300 kPa. At this state, the piston is resting on a set of stops, and the mass of the piston is such that a pressure of 500 kPa is required to move it. (a) Show the process on a P-v, T-v and P-T diagrams with respect to saturation lines and determine, (b)...
A piston-cylinder device contains 0.56 kg of steam at 300 degrees C and 1.4 MPa. Steam...
A piston-cylinder device contains 0.56 kg of steam at 300 degrees C and 1.4 MPa. Steam is cooled at constant pressure until one-half of the mass condenses. (a) Find the final temperature. T1= _______ degrees celcius (b) Determine the volume change in m3
A piston-cylinder device initially has a volume of 1.5 m3 containing steam at 300 kPa absolute...
A piston-cylinder device initially has a volume of 1.5 m3 containing steam at 300 kPa absolute and 150 oC. It is then heated so it expands at constant pressure until it reaches a temperature of 400 oC. Draw a diagram of the device showing system boundary and flows of energy. What boundary work is done by the cylinder, in kJ, during the expansion? State your assumptions. 1. What is the mass of steam in the piston-cylinder? 2. How much heat...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT