Question

In: Mechanical Engineering

A 10 kg steam initially at 2 MPa saturated vapor is inside an insulated piston cylinder....

A 10 kg steam initially at 2 MPa saturated vapor is inside an insulated piston cylinder. The cylinder has a bottom valve. As this valve opens, steam at 800 kPa and 200C exits while the steam inside the tank has 400kPa saturated vapor. Find the exit mass of steam from the cylinder in kg.

Solutions

Expert Solution

Ans -

Initial mass in the cylinder, m1 = 10 kg

Let the exit mass be 'me' and final mass into the cylinder be 'm2'

Then from the first law of thermodynamics for unsteady flow, we have

where, = m2u2 - m1u1

= change in the internal energy of the system

Q = heat transfer into the system

subscript 'i' represents the inlet condition of the gas

subscript 'e' represents the exit condition of the gas

W = work done by the gas

Now, the piston-cylinder is insulated, therefore, Q = 0

no work is done by the gas, therefore, W = 0

no mass enters into the cylinder, therefore, mi = 0

exit mass, me = m1 - m2

So, we have

.................................. (1)

Now,

u1 = 2600 kJ/kg (at 2 MPa, saturated vapour, from steam table)

u2 = 2554 kJ/kg (at 400 kPa, saturated vapour, from steam table)

he = 2839.8 kJ/kg (at 800 kPa and 200 oC , from steam table)

Putting all the values in equation (1), we have

  

Therefore, exit mass of steam, me = m1 - m2

= 10 - 8.39

= 1.61 kg (ans)


Related Solutions

Air is contained in a piston-cylinder. Initially, the 0.35 kg of air is at 2 MPa...
Air is contained in a piston-cylinder. Initially, the 0.35 kg of air is at 2 MPa and 350°C. The air is first expanded isothermally to 500 kPa, then compressed polytropically with a polytropic exponent of 1.25 to the initial pressure, and finally compressed at the constant pressure to the initial state. Calculate the net heat transfer during the polytropic process in kJ assuming constant specific heats at 300 K (with 3 significant figures).
1 kg of saturated steam at 1000 kPa is in a piston-cylinder and the massless cylinder...
1 kg of saturated steam at 1000 kPa is in a piston-cylinder and the massless cylinder is held in place by pins. The pins are removed and the system suddenly and adiabatically expands to 5x its original volume before the piston hits a pair of upper pins. The expansion takes place against an atmosphere is 60 kPa. What is the final specific internal energy of the system? The answer will be in kJ/kg.
A piston-cylinder device contains 0.56 kg of steam at 300 degrees C and 1.4 MPa. Steam...
A piston-cylinder device contains 0.56 kg of steam at 300 degrees C and 1.4 MPa. Steam is cooled at constant pressure until one-half of the mass condenses. (a) Find the final temperature. T1= _______ degrees celcius (b) Determine the volume change in m3
A mass of 3 kg of saturated liquid-vapor mixture of water is contained in a piston-cylinder...
A mass of 3 kg of saturated liquid-vapor mixture of water is contained in a piston-cylinder device at 175 kPa. Initially, 2 kg of the water is in the liquid phase and the rest is in the vapor phase. An electrical heater is in operation, and the piston rises until it hits a set of stops, which are set at double the initial volume. Electrical heating continues until the pressure reaches 500 kPa. Determine (a) the initial and final temperatures,...
A mass of 3 kg of saturated liquid-vapor mixture of water is contained in a piston-cylinder...
A mass of 3 kg of saturated liquid-vapor mixture of water is contained in a piston-cylinder device at 175 kPa. Initially, 2 kg of the water is in the liquid phase and the rest is in the vapor phase. An electrical heater is in operation, and the piston rises until it hits a set of stops, which are set at double the initial volume. Electrical heating continues until the pressure reaches 500 kPa. Determine (a) the initial and final temperatures,...
A piston-cylinder device initially contains 75 g of saturated water vapor at 310 kPa . A...
A piston-cylinder device initially contains 75 g of saturated water vapor at 310 kPa . A resistance heater is operated within the cylinder with a current of 0.4 A from a 200 Vsource until the volume doubles. At the same time a heat loss of 2 kJ occurs. a.Determine the final temperature (T2). b. Determine the duration of the process. c. What-if scenario: What is the final temperature if the piston-cylinder device initially contains saturated liquid water?
Saturated vapor steam enters a well-insulated turbine at 300oC. The mass flow rate is 1.00 kg/s...
Saturated vapor steam enters a well-insulated turbine at 300oC. The mass flow rate is 1.00 kg/s and the exit pressure is 50 kPa. Determine the final state of the steam if the turbine power output is 400 kW. a). What is the amount of heat transfer in or out the turbine ? b). Explain or show your calculation for your answer in a).    c). What is the substance that you use to look for pure substance properties ? d)....
A weighted piston-cylinder device (pressure is not constant) initially contains 1.2 kg saturated liquid water at...
A weighted piston-cylinder device (pressure is not constant) initially contains 1.2 kg saturated liquid water at 190oC. Now heat is transferred to the water until the volume quadruples (increase four times) and the cylinder contains saturated vapor only. Determine: a) The final volume of the tank. b) The final temperature and pressure. c) The internal energy change of the water.
A piston-cylinder device, whose piston is resting on a set of stops, initially contains 2 kg...
A piston-cylinder device, whose piston is resting on a set of stops, initially contains 2 kg of air at 300 kPa and 27ºC. The mass of the piston is such that a pressure of 600 kPa is required to move it upward. Heat is now transferred to the air until its volume doubles. a) Determine the work done by the air and b) the total heat transferred to the air during this process. c) Also, sketch the process on a...
A piston–cylinder device contains steam that undergoes a reversible thermodynamic cycle. Initially the steam is at...
A piston–cylinder device contains steam that undergoes a reversible thermodynamic cycle. Initially the steam is at 400 kPa and 350oC with a volume of 0.3 m3. The steam is first expanded isothermally to 150 kPa, then compressed adiabatically to the initial pressure, and finally compressed at the constant pressure to the initial state. Determine (a) the net work and heat transfer for the cycle after you calculate the work and heat interaction for each process and (b) show the cyclic...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT