In: Math
Determine the area under the standard normal curve that lies between:
a. z= -.31 and z=1.61
b. z=-2.01 and z=.26
c. z=-1.20 and z=2.11
d. z=1.92 and z=2.43
Find the value of za
a. z.56=
b. Z.23=
c. Z.81=
d. Z.06=
Solution,
1) Using standard normal table,
a) P( -0.31 < Z < 1.61)
= P( Z < 1.61) - P( Z < -0.31)
= 0.9463 - 0.3783
= 0.5680
b) P( -2.01 < Z < 0.26)
= P( Z < 0.26) - P( Z < -2.01)
= 0.6026 - 0.0222
= 0.5804
c) P( -1.20 < Z < 2.11)
= P( Z < 2.11) - P( Z < -1.20)
= 0.9826 - 0.1151
= 0.8675
d) P( 1.92 < Z < 2.43)
= P( Z < 2.43) - P( Z < 1.92)
= 0.9925 - 0.9726
= 0.0199
2) Using standard normal table,
a) P(Z > z) = 0.56
= 1 - P(Z < z) = 0.56
= P(Z < z) = 1 - 0.56
= P(Z < z ) = 0.44
= P(Z < -0.15 ) = 0.44
z = -0.15
b) P(Z > z) = 0.23
= 1 - P(Z < z) = 0.23
= P(Z < z) = 1 - 0.23
= P(Z < z ) = 0.77
= P(Z < 0.74 ) = 0.77
z = 0.74
c) P(Z > z) = 0.81
= 1 - P(Z < z) = 0.81
= P(Z < z) = 1 - 0.81
= P(Z < z ) = 0.19
= P(Z < -0.88 ) = 0.19
z = -0.88
d) P(Z > z) = 0.06
= 1 - P(Z < z) = 0.06
= P(Z < z) = 1 - 0.06
= P(Z < z ) = 0.94
= P(Z < 1.55 ) = 0.94
z = 1.55