Question

In: Mechanical Engineering

what is the ratio for Heating duty to the Cooling duty of the ideal rankine cycle

what is the ratio for Heating duty to the Cooling duty of the ideal rankine cycle

Solutions

Expert Solution

thank you.


Related Solutions

What are the roles of turbines and cooling towers in cycling (eg Rankine cycle) systems? Support...
What are the roles of turbines and cooling towers in cycling (eg Rankine cycle) systems? Support your explanation providing a few pictures of these systems (You can google it or search in your book) and explain how they work.
Consider an ideal Rankine cycle using water with a high-pressure side of the cycle at a...
Consider an ideal Rankine cycle using water with a high-pressure side of the cycle at a supercritical pressure. Such a cycle has a potential advantage of minimizing local temperature differences between the fluids in the steam generator, such as the instance in which the high-temperature energy source is the hot exhaust gas from a gas- turbine engine. Calculate the thermal efficiency of the cycle if the state entering the turbine is 30 MPa, 550°C, and the condenser pressure is 5...
A Rankine cycle (not an ideal cycle) generates steam (H2O, Water) at 100 bars and 640...
A Rankine cycle (not an ideal cycle) generates steam (H2O, Water) at 100 bars and 640 oC (state 3) and the turbine-exhaust pressure is 0.08 bar (state 4). The enthalpy value of the turbine outlet is 2577.0 kJ/kg (state 4). Assuming the state of the inlet of pump is a saturated liquid and kinetic and potential energy changes are negligible, a pump operates isentropically and it has a steady state mass flow rate of 23,740 kg/h through it. Determine a....
A steam powerplant operating on an ideal Rankine Cycle is operating at a boiler pressure of...
A steam powerplant operating on an ideal Rankine Cycle is operating at a boiler pressure of 5.75MPa, steam enters the turbine at 500°C and expands to 147kPa. If the powerplant is producing 5MW of energy find the following: Enthalpies at each point of the cycle 1,2,3,B (hint: you will have to interpolate horizontally for point 1 and interpolate for the f,g,fg values for point 2) Net work in kj/kg Mass flow rate of throttle steam used by the powerplant Heat...
Ideal Reheat Steam Cycle (10) Consider a steam power plant operating on the ideal reheat Rankine...
Ideal Reheat Steam Cycle (10) Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at PH MPa and TH °C and is condensed in the condenser at a pressure of PL kPa. Assume the steam is reheated to the inlet temperature of the high-pressure turbine, and that pump work is NOT negligible. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed w% percent,...
1. A steam powerplant operating on an ideal Rankine Cycle is operating at a boiler pressure...
1. A steam powerplant operating on an ideal Rankine Cycle is operating at a boiler pressure of 5.75 MPa, steam enters the turbine at 500°C and expands to 147 kPa. If the powerplant is producing 5MW of energy find the following: a. Enthalpies at each point of the cycle 1,2,3,B b. Net work in kj/kg c. Mass flow rate of throttle steam used by the powerplant d. heat added in the boiler e. heat rejected in the condenser f. cycle...
An ideal Rankine Cycle with reheat uses water as the working fluid with a flow rate...
An ideal Rankine Cycle with reheat uses water as the working fluid with a flow rate of 0.15 kg/s. At the inlet of the turbine (state 1) the water is a superheated vapor at 475ºC and 11 MPa. The pressure at the exit of the first stage of the turbine is 0.9 MPa. The reheat temperature (state 3) is also  475ºC.   The condenser pressure is 8 kPa, and the water exits as a saturated liquid Find: (a) The heat addition to...
An ideal Rankine Cycle with reheat uses water as the working fluid with a flow rate...
An ideal Rankine Cycle with reheat uses water as the working fluid with a flow rate of 0.15 kg/s. At the inlet of the turbine (state 1) the water is a superheated vapor at 475ºC and 11 MPa. The pressure at the exit of the first stage of the turbine is 0.9 MPa. The reheat temperature (state 3) is also  475ºC.   The condenser pressure is 8 kPa, and the water exits as a saturated liquid Find: (a) The heat addition to...
An ideal Rankine cycle operates with a turbine inlet pressure of 600 psia and a turbine...
An ideal Rankine cycle operates with a turbine inlet pressure of 600 psia and a turbine inlet temperature of 526 oF. The steam is isentropically expanded through the turbine to 15 psia as illustrated on the T-s diagram shown below. Using the Mollier diagram, determine the enthalpy at the turbine inlet, in BTU/lbm, under these operating conditions. State your answer in whole numbers.
An ideal Rankine cycle operates with a turbine inlet pressure of 900 psia and a turbine...
An ideal Rankine cycle operates with a turbine inlet pressure of 900 psia and a turbine inlet temperature of 572 oF. The steam is isentropically expanded through the turbine to 5 psia as illustrated on the T-s diagram shown below. Using the Mollier diagram, determine the percent moisture at the turbine outlet under these operating conditions. State your answer in whole numbers.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT