Question

In: Mechanical Engineering

A heat engine operates between a source and a sink. The source temperatures vary from 300...

A heat engine operates between a source and a sink. The source temperatures vary from 300 to 1000°C. Heat is supplied to the heat engine at a steady rate of 1200 kJ/min. Using Matlab or Excel (or other) software, study the effects of the temperatures of the heat source and the heat sink on the maximum power produced and the cycle thermal efficiency. Plot the power produced and the cycle efficiency against the source temperature for sink temperatures of 0°C, 25°C, and 50°C, and discuss the results.

Solutions

Expert Solution

clc;clear all;close all;
%Source temperature
TH1=300:50:1000;%Source temperature is vary from 300 to 1000 with 5 increment.
TH=TH1+273;%To convert oC to Kelvine
%Sink temperature
TL1=[0 25 50];%in oC
TL=TL1+273;%in Kelvine
%Heat supplied
Qin=1200;
effi(1,:)=1-(TL(1)./TH);
effi(2,:)=1-(TL(2)./TH);
effi(3,:)=1-(TL(3)./TH);
figure
hold on
xlabel('Source Temperature in 0C (TH)')
ylabel('Efficiency')
title('Efficiency Vs TH with constant TL')
for i=1:3
plot(TH1,effi(i,:))
legendInfo{i} = ['TL = ' num2str(TL1(i))];   
end
legend(legendInfo)

%Maximum work
Wmax=effi*Qin;
figure
hold on
xlabel('Source Temperature in 0C(TH)')
ylabel('Maximum work in kJ/min')
title('Maximum Work Vs TH with constant TL')
for i=1:3
plot(TH1,Wmax(i,:))
legendInfo{i} = ['TL = ' num2str(TL1(i))];   
end
legend(legendInfo)


Related Solutions

A heat engine operates by extracting 2,000 KJ of heat from a source at 1500 K,...
A heat engine operates by extracting 2,000 KJ of heat from a source at 1500 K, and dumping 800 of waste heat into a sink at 300 K. a) Does this engine violate any known laws of thermodynamics? b) How much work does this engine produce? c) What are the first and second law efficiencies?
1. A nuclear power plant contains a heat engine that operates between the temperatures of 150oC...
1. A nuclear power plant contains a heat engine that operates between the temperatures of 150oC and 677oC. (a) What is the Carnot efficiency of the engine? (b) If the engine exhausts energy to the cold reservoir at a rate of QC = 7.0 × 108 J per second, how much heat energy must be flowing into the engine from the hot reservoir (QH) each second? 2. A house has a flat (horizontal) roof. If the wind then blows over...
A particular power plant operates with a heat-source reservoir at 350°C and a heat-sink reservoir at...
A particular power plant operates with a heat-source reservoir at 350°C and a heat-sink reservoir at 30°C. It has a thermal efficiency equal to 67% of the Carnot-engine thermal efficiency for the same temperatures. What is the thermal efficiency of the plant? The thermal efficiency of the plant is  .
A reversible heat engine operates between two reservoirs at temperatures 700 °C 푎푛푑 50 °C ....
A reversible heat engine operates between two reservoirs at temperatures 700 °C 푎푛푑 50 °C . The engine drives a reversible refrigerator which operates between reservoirs at temperatures of 50 °C 푎푛푑 − 25 °C . The heat transfer to the engine is 2500 KJ and the net work output of the combined engine refrigerator plant is 400 KJ. i) Determine the heat transfer to the refrigerant and the net heat transfer to the reservoir at 50 °C ii) Reconsider...
A Carnot heat engine operates between temperature levels of 600 K and 300 K with 8...
A Carnot heat engine operates between temperature levels of 600 K and 300 K with 8 MW heat transferred in the boiler. It drives a compressor, which compresses steam from 200 kPa, 200°C to 1 MPa, 500°C. If mass flow rate of the steam is 5 kg/s. determine the following: (a) The power output of the heat engine (kW). (b) The power input of the compressor (kW). (c) The efficiency of the compressor.
A particular car engine operates between temperatures of 400°C (inside the cylinders of the engine) and...
A particular car engine operates between temperatures of 400°C (inside the cylinders of the engine) and 20°C (the temperature of the surroundings). Given these two temperatures, what is the maximum possible efficiency the car can have? (Note that actual car engine efficiencies are in the 20-25% range.) _______ % Part (b) A particular car engine operates between temperatures of 400°C (inside the cylinders of the engine) and 20°C (the temperature of the surroundings). If the car was somehow able to...
NASA has created a heat engine which operates between the sun and the vacuum of the...
NASA has created a heat engine which operates between the sun and the vacuum of the space where the temperature is absolute zero. He says that his engine is nearly 100% efficient. Do you agree with the claim assuming the engine to be totally reversible? Analyse the scenario using equation for efficiency of Carnot engine and Kelvin statement to evaluate your conclusion.
A Carnot engine operates between temperatures of 200 K and 350 K. In each cycle, 4000...
A Carnot engine operates between temperatures of 200 K and 350 K. In each cycle, 4000 J of heat is added to the ideal gas. This engine works on 0.5 mols of a diatomic gas. A) Calculate the volume ratio for just the adiabatic expansion. B) Determine the compression ratio - the highest volume divided by the lowest. C) If you reversed the cycle, how much work would be necessary to pull 100 J of heat from the cold temperature...
A steam power plant operates with a boiler that is heated from a heat source at...
A steam power plant operates with a boiler that is heated from a heat source at 457 °C and produces 450 ton/hr. of steam. The steam leaves the boiler at 425 °C and 4 MPa. The steam reaches a turbine at 375 °C and 3 MPa and leaves it at 50 kPa with 4% liquid water. This mixture is flown into a condenser that rejects the heat into a river at 17 °C. Water leaves the condenser at 50 kPa...
A Carnot heat engine operates between two thermal reservoirs ( T1 > T2 ) to generate...
A Carnot heat engine operates between two thermal reservoirs ( T1 > T2 ) to generate as much power as required as to drive a machine ( input power requirement of 30 kW ) plus to drive an ideal heat pump working between 2 temperature limits ( T3 and T4 ) ( T3 > T4 ) . The pump takes 17 kW of heat from the low temperature reservoir where T1 = 1200K, T2= T3 =335 K, T4 = 278...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT