Question

In: Mechanical Engineering

A Carnot heat engine operates between two thermal reservoirs ( T1 > T2 ) to generate...

A Carnot heat engine operates between two thermal reservoirs ( T1 > T2 ) to generate as much power as required as to drive a machine ( input power requirement of 30 kW ) plus to drive an ideal heat pump working between 2 temperature limits ( T3 and T4 ) ( T3 > T4 ) . The pump takes 17 kW of heat from the low temperature reservoir where T1 = 1200K, T2= T3 =335 K, T4 = 278 K. Determine :
1. shaft work output of heat engine.
2. heat intake of heat engine.
2. heat delivered by the heat pump.

please explain in an easy to understand way as my end sem is tomorrow morning. ??

Solutions

Expert Solution


Related Solutions

A heat engine operates between two reservoirs at T2 = 600 K and T1 = 350...
A heat engine operates between two reservoirs at T2 = 600 K and T1 = 350 K. It takes in 1 000 J of energy from the higher-temperature reservoir and performs 250 J of work. Find (a) the entropy change of the Universe delta SU for this process and (b) the work W that could have been done by an ideal Carnot engine operating between these two reservoirs. (c) Show that the difference between the amounts of work done in...
Show that, for a Carnot engine operating between reservoirs at temperatures T1 and T2 (T1 >...
Show that, for a Carnot engine operating between reservoirs at temperatures T1 and T2 (T1 > T2), the thermal efficiency is given by Eta sub R = T1-T2/T1
A reversible heat engine operates between two reservoirs at temperatures 700 °C 푎푛푑 50 °C ....
A reversible heat engine operates between two reservoirs at temperatures 700 °C 푎푛푑 50 °C . The engine drives a reversible refrigerator which operates between reservoirs at temperatures of 50 °C 푎푛푑 − 25 °C . The heat transfer to the engine is 2500 KJ and the net work output of the combined engine refrigerator plant is 400 KJ. i) Determine the heat transfer to the refrigerant and the net heat transfer to the reservoir at 50 °C ii) Reconsider...
A Carnot heat engine operates between temperature levels of 600 K and 300 K with 8...
A Carnot heat engine operates between temperature levels of 600 K and 300 K with 8 MW heat transferred in the boiler. It drives a compressor, which compresses steam from 200 kPa, 200°C to 1 MPa, 500°C. If mass flow rate of the steam is 5 kg/s. determine the following: (a) The power output of the heat engine (kW). (b) The power input of the compressor (kW). (c) The efficiency of the compressor.
Consider the transfer of 10kJ of heat between thermal reservoirs at 500 and 400K. (a) Determine...
Consider the transfer of 10kJ of heat between thermal reservoirs at 500 and 400K. (a) Determine the magnitude, in kilojoules, and the direction of the availability transfer for two reservoirs. (b) Now, consider the transfer of 10 kJ of heat between thermal reservoirs at 280 and 250K. Determine the magnitude and direction of the availability transfers for these two reservoirs. (c) Compare the direction of heat transfer versus availability transfer for the two processes. The environmental temperature is 298K.
8-12)A heat engine operates in a Carnot cycle between 84.0°C and 355°C. It absorbs 21,600 J...
8-12)A heat engine operates in a Carnot cycle between 84.0°C and 355°C. It absorbs 21,600 J of energy per cycle from the hot reservoir. The duration of each cycle is 3.00 s. (a) What is the mechanical power output of this engine? kW (b) How much energy does it expel in each cycle by heat? kJ 12)A Carnot engine operates between 105°C and 18°C. How much ice can the engine melt from its exhaust after it has done 4.0 ✕...
Two solid bodies at initial temperatures T1 and T2, with T1 > T2, are placed in...
Two solid bodies at initial temperatures T1 and T2, with T1 > T2, are placed in thermal contact with each other. The bodies exchange heat only with eachother but not with the environment. The heat capacities C ≡ Q/∆T of each body are denoted C1 and C2, and are assumed to be positive. (a) Is there any work done on the system? What is the total heat absorbed by the system? Does the internal energy of each subsystem U1 and...
A Carnot heat engine receives heat at 850 K and rejects the waste heat to the...
A Carnot heat engine receives heat at 850 K and rejects the waste heat to the environment at 298 K. The entire work output of the heat engine is used to drive a Carnot refrigerator that removes heat from the cooled space at -17⁰C at a rate of 450 kJ/min and rejects it to the same environment at 298 K. Determine; (a) the rate of heat supplied to the heat engine and (b) the total rate of heat rejection to...
A "Carnot" refrigerator (reverse of a Carnot engine) absorbs heat from the freezer compartment at a...
A "Carnot" refrigerator (reverse of a Carnot engine) absorbs heat from the freezer compartment at a temperature of -17
Professor Modyn wants to power his refrigerator with a heat engine. A Carnot heat engine receives...
Professor Modyn wants to power his refrigerator with a heat engine. A Carnot heat engine receives heat from a reservoir at 493.0°C at a rate of 767 kJ/min and rejects heat to the ambient air at 29.1°C. The entire work output of the heat engine is used to drive a refrigerator that removes heat from the refrigerated space at -3.23°C and transfers it to the same ambient air at 29.1°C. Note: The IUPAC sign conversion for work is used. Work...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT