Question

In: Mechanical Engineering

A cylindrical pressure vessel with flat ends of length 6 ft and inner diameter of 35...

A cylindrical pressure vessel with flat ends of length 6 ft and inner diameter of 35 in. is subjected to an internal gauge pressure of 150 psi. Neglect the end effects and the mass of ends of the pressure vessel in your design. Take the factor of safety as 1.95:

1. Design the radial thickness of the pressure vessel using steel. For steel, assume that the Young’s modulus is 30 Msi, Poisson’s ratio is 0.3, specific gravity of steel is 7.8, and the ultimate normal tensile and compressive strength is 36 ksi.


2. Find the axial elongation of the steel pressure vessel designed in part (1), assuming plane stress conditions.


3. Find whether graphite/epoxy would be a better material to use for minimizing mass if, in addition to resisting the applied pressure, the axial elongation of the pressure vessel does not exceed that of the steel pressure vessel. The vessel operates at room temperature and curing residual stresses are neglected for simplification. The following are other specifications of the design:


Only 0°, +45°, –45°, +60°, –60°, and 90° plies can be used.


The thickness of each lamina is 0.005 in.


Use specific gravities of the laminae from Example 5.6.


Use Tsai–Wu failure criterion for calculating strength ratios.


Solutions

Expert Solution


Related Solutions

A closed rigid cylindrical vessel (internal diameter = 2 ft and internal height = 10 ft)...
A closed rigid cylindrical vessel (internal diameter = 2 ft and internal height = 10 ft) has R-134a at x = 0.95 and 40 oF. The vessel is heated up to 100 oF. Assume that heat loss from the vessel is negligible. Kinetic and potential effects are negligible. Determine 1) the final pressure in psi [lbf/in2], 2) the mass of R-134a in lbm, 3) the heat transfer in Btu for this process and discuss its direction (if the heat is...
If a cylindrical steel pressure vessel has a 400-mm inner radius and 8-mm-thick walls. Find the...
If a cylindrical steel pressure vessel has a 400-mm inner radius and 8-mm-thick walls. Find the change (mm) in the inner radius when the vessel is pressurized to 1.2 MPa. Use E = 200 GPa and v = 0.3 for steel.
A cylindrical pressure vessel is subjected to an internal pressure of 350psi. The initial dimensions of...
A cylindrical pressure vessel is subjected to an internal pressure of 350psi. The initial dimensions of the vessel prior to pressurization are a diameter of 12.00 inches, a length of 24.00 inches and a wall thickness of 0.06 inches. The material used in the vessel is steel with σy= 60,000 psi, (σ)̅ = 90,000(ε)̅ )0.2 , E = 30 × 10^6psi, ν = 0.3. a. What amount of axial stress must be applied in addition to the stresses produced by...
A short and hollow cylindrical bar, having an outer diameter of 4.00 in and an inner...
A short and hollow cylindrical bar, having an outer diameter of 4.00 in and an inner diameter of 7 in, is subjected to two simultaneous loads - an axial compressive force of 75,100 lb. and a torsional moment of 20,100 lb • in. You are required to create two-dimensional (2D) and three-dimensional (3D) stress elements for two stress states on the outer and inner surfaces of the bar to in-plane and out-of-plane stresses, respectively and then draw the 2D and...
A cylindrical tank with inner diameter 2.0 m is designed to operate as a fluidized bed...
A cylindrical tank with inner diameter 2.0 m is designed to operate as a fluidized bed reactor for a heterogeneous catalytic reaction. The tank is loaded with a random packing of cubic particles to a height of 4.0 m with voidage 0.4 before the fluidization process. The density and length of each side of the cubic particles are 2600 kg m-3 and 1.0 cm respectively. During operation, a liquid reactant with density 1000 kg m-3 and viscosity 1.0 x 10-3...
a.By considering a cylindrical pressure vessel subjected to an internal pressure P, show in which one...
a.By considering a cylindrical pressure vessel subjected to an internal pressure P, show in which one of the three primary stress orientations a crack-like defect would be most likely to cause failure when the internal pressure reaches a critical value. Support your answer with sketches and explain your reasoning.
Consider a long straight hollow cylindrical metal tube with an inner diameter of R. The possible...
Consider a long straight hollow cylindrical metal tube with an inner diameter of R. The possible TE modes and TM modes for electromagnetic waves to propagate in this wave guide system
A cylindrical specimen of aluminum having a diameter of 0.75 inches and a length of 8...
A cylindrical specimen of aluminum having a diameter of 0.75 inches and a length of 8 inches is deformed elastically in tension with a force of 11,000 lb. Assume the following properties: Modulus of Elasticity: 10 Mpsi; Yield Strength: 40 kpsi; Tensile Strenght: 50 kpsi; Percent Elongation: 17; Poisson's Ratio: .33 Determine the following: (a) The amount by which this specimen will elongate in the direction of the applied stress (b) The change in diameter of the specimen. Will the...
A thick spherical pressure vessel of inner radius 150 mm is subjected to maximum an internal...
A thick spherical pressure vessel of inner radius 150 mm is subjected to maximum an internal pressure of 80 MPa. Calculate its wall thickness based upon the (a) principal stress theory, and (b) total strain energy theory. Poisson's ratio = 0-30, yield strength 300 MPa. please answer only if you know correctly.
A cylindrical shaped potato with length 2 cm and a diameter of 0.5 cm was dried...
A cylindrical shaped potato with length 2 cm and a diameter of 0.5 cm was dried at a temperature of 65 o C in a convective oven for 24 h, if the surface temperature of the potato remained at 62 o C throughout the drying operation, describe the different changes that occurs during the constant and falling rate periods
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT