In: Statistics and Probability
QUESTION 8
Use the Manufacturing database from “Excel Databases.xls” on Blackboard. Use Excel to develop a multiple regression model to predict Cost of Materials by Number of Employees, Number of Production Workers, Value Added by Manufacture, New Capital Expenditures, and End-of-Year Inventories. Use Excel to perform a backward elimination regression analysis at a 5% level of significance. What is the test statistic of the independent variable that is dropped from the linear model in the first step. Write your answer as a number and round to 2 decimal places.
https://drive.google.com/file/d/19TI3HId0greXS0nkmDuoITv1IMPF_TUK/view?usp=sharing
Please answer tonight, I need help with this and my last questions got closed.
A multiple regression model to predict Cost of Materials by Number of Employees, Number of Production Workers, Value Added by Manufacture, New Capital Expenditures, and End-of-Year Inventories.
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.839739844 | |||||||
R Square | 0.705163006 | |||||||
Adjusted R Square | 0.694161626 | |||||||
Standard Error | 13587.81459 | |||||||
Observations | 140 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 5 | 59171362320 | 1.18E+10 | 64.0976843 | 7.34406E-34 | |||
Residual | 134 | 24740246509 | 1.85E+08 | |||||
Total | 139 | 83911608829 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | -921.8128594 | 1576.212143 | -0.58483 | 0.55964687 | -4039.285837 | 2195.660118 | -4039.285837 | 2195.660118 |
No. Emp. | -279.160853 | 45.42582026 | -6.14542 | 8.53111E-09 | -369.0052104 | -189.3164956 | -369.0052104 | -189.3164956 |
No. Prod. Wkrs. | 336.1246881 | 50.9337021 | 6.599259 | 8.80871E-10 | 235.3867001 | 436.8626761 | 235.3867001 | 436.8626761 |
Value Added by Mfg. | 1.338788815 | 0.26095153 | 5.130412 | 9.92166E-07 | 0.822672156 | 1.854905473 | 0.822672156 | 1.854905473 |
New Cap. Exp. | 1.264888119 | 1.42112829 | 0.890059 | 0.375029357 | -1.54585602 | 4.075632257 | -1.54585602 | 4.075632257 |
End Yr. Inven. | 0.777053472 | 0.433971543 | 1.790563 | 0.075621193 | -0.081266625 | 1.635373569 | -0.081266625 | 1.635373569 |
A backward elimination regression analysis at a 5% level of significance.
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.786739964 | |||||||
R Square | 0.61895977 | |||||||
Adjusted R Square | 0.610554471 | |||||||
Standard Error | 15332.99468 | |||||||
Observations | 140 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 3 | 51937910124 | 17312636708 | 73.63923123 | 2.37064E-28 | |||
Residual | 136 | 31973698705 | 235100725.8 | |||||
Total | 139 | 83911608829 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | -1296.437754 | 1766.919907 | -0.733727515 | 0.464377817 | -4790.629258 | 2197.75375 | -4790.629258 | 2197.75375 |
No. Prod. Wkrs. | 40.5598283 | 19.9748762 | 2.030542162 | 0.044250749 | 1.058296608 | 80.06136 | 1.058296608 | 80.06136 |
Value Added by Mfg. | 0.654798086 | 0.207463658 | 3.156206217 | 0.001968557 | 0.244526094 | 1.065070078 | 0.244526094 | 1.065070078 |
New Cap. Exp. | 3.71342516 | 1.497100481 | 2.48041144 | 0.014343744 | 0.75281797 | 6.674032351 | 0.75281797 | 6.674032351 |
The test statistic of the independent variable that is dropped from the linear model in the first step.
The test statistic t has the same sign as the correlation coefficient r is used to drop independent variable(No. Emp.) from the linear model in the first step with the significant F value(1.2849E-27).