Question

In: Statistics and Probability

Use the International Stock Market database from “Excel Databases.xls” on Blackboard. Use Excel to develop a...

Use the International Stock Market database from “Excel Databases.xls” on Blackboard. Use Excel to develop a multiple regression model to predict the Nikkei by the DJIA, the Nasdaq, the S&P 500, the Hang Seng, the FTSE 100, and the IPC. Assume a 1% level of significance.

What percent of residuals are within 1 standard error? Write your answer as a number rounded to 1 decimal place. Do not include the % sign in your answer.

Excel Data: https://drive.google.com/file/d/1TQG5r2wzLGk--75whZXyb0SDTHZTWS0S/view?usp=sharing

Solutions

Expert Solution

data

NIKKEI 225 HANG SENG FTSE 100 IPC DJIA NASDAQ S&P 500
87.63 1658.5 5774.95 1351.73 8270.87 1591.56 869.89
97.73 1856.39 6375.22 1616.08 8000.86 1476.42 825.88
89.49 1820.22 6033.18 1436.55 8776.39 1577.03 903.25
86.68 1850.86 7041.92 1612.58 8829.04 1535.57 896.24
107.68 2319.76 8780.95 2284.53 9336.93 1720.95 968.75
118.69 2678.44 10077.78 2554.66 10850.66 2091.88 1164.74
121.78 2929.61 10569.58 2700.02 11543.55 2367.52 1282.83
127.03 2834.06 10912.45 2814.32 11378.02 2325.55 1267.38
138.12 3182.05 11797.14 3059.82 11350.01 2292.98 1280
132.27 3304.82 12020.49 2886.28 12638.32 2522.66 1400.38
124.23 2970.75 11561.18 2996.44 12820.13 2412.8 1385.59
125.67 3029.8 11534.82 2757.18 12262.89 2279.1 1322.7
127.03 3094.02 11869.34 2721.47 12266.39 2271.48 1330.63
137.03 3566.91 12853.11 2706.25 12650.36 2389.86 1378.55
141.48 3680.01 13202.62 2744.68 13264.82 2652.28 1468.36
146.86 4059.75 13710.23 2887.75 13371.72 2660.96 1481.14
145.66 3493.38 13292.91 2824.73 13930.01 2859.12 1549.38
142.62 3066.91 12744.42 2795.17 13895.63 2701.5 1526.75
142.31 2868.1 12683.95 2738.32 13357.74 2596.36 1473.99
148.36 2785.83 13271.05 2918.1 13211.99 2546.27 1455.27
147.16 2638.3 13213.43 2979.65 13408.62 2603.23 1503.35
144.26 2597.52 12833.75 2650.22 13627.64 2604.52 1530.62
144.55 2534.49 12491.48 2643.28 13062.91 2525.09 1482.37
148.38 2476.25 11972.75 2381.06 12354.35 2421.64 1420.86
145.38 2617.79 12379.44 2533.66 12268.63 2416.15 1406.82
144.57 2567.06 12175.05 2442.83 12621.69 2463.93 1438.24
141.71 2403.98 11926.86 2268.27 12463.15 2415.29 1418.3
139.99 2372.8 11727.62 2145.5 12221.93 2431.77 1400.63
138.07 2251.33 11229.61 1969.79 12080.73 2366.71 1377.94
137.52 2240.08 11323.31 1942.88 11679.07 2258.43 1335.85
134.09 2175.71 10981.88 1810.7 11381.15 2183.75 1303.82
135.75 2101.99 10851.78 1804.9 11185.68 2091.47 1276.66
137.92 2016.67 10740.7 1699.2 11150.22 2172.09 1270.2
149.8 2148.93 11033.48 1870.23 11168.31 2178.88 1270.09
146.92 2070.09 10464.16 1805.45 11367.14 2322.57 1310.61
137.66 2039.02 10244.06 1820.84 11109.32 2339.79 1294.87
139.92 2029.29 10324.87 1837.52 10993.41 2281.39 1280.66
136.5 1918.66 9646 1685.12 10864.86 2305.82 1280.08
125.61 1942.99 9490.98 1627.2 10717.5 2205.32 1248.29
118.87 1879.79 9413.49 1479.4 10805.87 2232.82 1249.48
118.36 1984.42 9652.19 1490.35 10440.07 2120.3 1207.01
113.63 1949.17 9746.37 1353.07 10568.7 2151.69 1228.81
106.54 1927.06 9366.65 1376.06 10481.6 2152.09 1220.33
104.15 1827.1 9142.46 1259.04 10640.91 2184.83 1234.18
104.66 1782.11 9098.04 1211.94 10274.97 2056.96 1191.33
104.65 1783.94 9089.81 1127.03 10467.48 2068.22 1191.5
109.24 1729.81 9281.12 1140.06 10192.51 1921.65 1156.85
112.78 1802.76 9600.89 1243.08 10503.76 1999.23 1180.59
109.39 1740.82 9221.95 1193.78 10766.23 2051.72 1203.6
111.68 1830.55 9162.32 1164.34 10489.94 2062.41 1181.27
104.79 1821.7 9130.15 1094.63 10783.01 2175.44 1211.92
100.91 1683.15 8568.45 1007.95 10428.02 2096.81 1173.82
99.49 1682.63 8369.66 975.11 10027.47 1974.99 1130.2
101.64 1669.73 8074.64 906.4 10080.27 1896.84 1114.58
101.27 1564.33 8065.1 890.57 10173.92 1838.1 1104.24
109.97 1575.17 8032.19 894.2 10139.71 1887.36 1101.72
102.77 1552.7 8126.01 875.08 10435.48 2047.79 1140.84
106.54 1532.17 7967.62 891.59 10188.45 1986.74 1120.68
112.69 1627.42 8192.45 950.59 10225.57 1920.15 1107.3
103.45 1788.16 8479.88 924.09 10357.7 1994.22 1126.21
102.15 1671.89 7969.92 880.17 10583.92 2029.82 1144.94
99.62 1619.86 8014.26 782.69 10488.07 2066.15 1131.13
87.63 1658.5 5774.95 1351.73 8270.87 1591.56 869.89

result

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.942627
R Square 0.888545
Adjusted R Square 0.876603
Standard Error 6.69507
Observations 63
ANOVA
df SS MS F Significance F
Regression 6 20011.41484 3335.236 74.40742 7.22E-25
Residual 56 2510.142194 44.82397
Total 62 22521.55703
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0%
Intercept 56.7765 10.64499849 5.333631 1.79E-06 35.452 78.10099 35.452
HANG SENG -0.01454 0.005127838 -2.83567 0.006352 -0.02481 -0.00427 -0.02481
FTSE 100 0.011127 0.002987937 3.723996 0.000457 0.005142 0.017113 0.005142
IPC 0.009089 0.003239319 2.805767 0.006891 0.0026 0.015578 0.0026
DJIA -0.00833 0.003949001 -2.10978 0.03936 -0.01624 -0.00042 -0.01624
NASDAQ 0.020216 0.019942525 1.013721 0.315076 -0.01973 0.060166 -0.01973
S&P 500 0.014186 0.066891522 0.212068 0.832824 -0.11981 0.148185 -0.11981
RESIDUAL OUTPUT
Observation Predicted NIKKEI 225 Residuals Standard Residuals >1 <-1
1 84.81055 2.819446561 0.443109 1 1 1
2 90.31252 7.417480745 1.165744 0 1 0
3 82.071 7.418997997 1.165982 0 1 0
4 93.07343 -6.393426365 -1.0048 1 0 0
5 112.2575 -4.577490967 -0.71941 1 1 1
6 121.5944 -2.904384809 -0.45646 1 1 1
7 126.2103 -4.430323064 -0.69628 1 1 1
8 132.7652 -5.735162001 -0.90135 1 1 1
9 139.5343 -1.414330353 -0.22228 1 1 1
10 134.2745 -2.004450425 -0.31502 1 1 1
11 131.0771 -6.847061666 -1.0761 1 0 0
12 128.7982 -3.128155426 -0.49163 1 1 1
13 131.1913 -4.16129081 -0.654 1 1 1
14 134.9971 2.032885872 0.319492 1 1 1
15 139.0506 2.429407158 0.38181 1 1 1
16 139.9435 6.916485324 1.087007 0 1 0
17 143.2854 2.37464049 0.373203 1 1 1
18 139.8938 2.726198219 0.428454 1 1 1
19 143.2026 -0.892599571 -0.14028 1 1 1
20 152.5017 -4.141692803 -0.65092 1 1 1
21 154.7605 -7.600506959 -1.19451 1 0 0
22 146.7228 -2.462796518 -0.38706 1 1 1
23 146.1826 -1.632601066 -0.25658 1 1 1
24 141.8137 6.566280433 1.031968 0 1 0
25 146.0718 -0.691843843 -0.10873 1 1 1
26 142.1798 2.390176678 0.375644 1 1 1
27 140.2577 1.452311202 0.228248 1 1 1
28 139.4705 0.519482161 0.081643 1 1 1
29 133.6377 4.432305402 0.696589 1 1 1
30 135.1597 2.360334829 0.370954 1 1 1
31 131.6132 2.476789823 0.389256 1 1 1
32 130.5626 5.187449627 0.815268 1 1 1
33 131.4401 6.47987746 1.018388 0 1 0
34 134.3142 15.48582685 2.433779 0 1 0
35 130.36 16.5599532 2.60259 0 1 0
36 130.7755 6.884488468 1.081978 0 1 0
37 131.5513 8.368721924 1.315242 0 1 0
38 125.7776 10.72235775 1.685144 0 1 0
39 121.9176 3.692427061 0.580308 1 1 1
40 120.4676 -1.597568622 -0.25108 1 1 1
41 121.8722 -3.512194475 -0.55198 1 1 1
42 122.0571 -8.427148205 -1.32442 1 0 0
43 118.9759 -12.4358957 -1.95445 1 0 0
44 116.4023 -12.25230976 -1.92559 1 0 0
45 115.9901 -11.3300996 -1.78066 1 0 0
46 113.7263 -9.076333692 -1.42645 1 0 0
47 115.5969 -6.356880077 -0.99906 1 1 1
48 118.3425 -5.562503546 -0.87421 1 1 1
49 113.7794 -4.389382537 -0.68984 1 1 1
50 113.7448 -2.064810265 -0.32451 1 1 1
51 113.1601 -8.370064855 -1.31545 1 0 0
52 108.9644 -8.054350694 -1.26584 1 0 0
53 106.7172 -7.227167422 -1.13583 1 0 0
54 100.7562 0.883825796 0.138904 1 1 1
55 99.92433 1.345667045 0.211487 1 1 1
56 100.6786 9.291368305 1.460247 0 1 0
57 103.2095 -0.439534928 -0.06908 1 1 1
58 102.4337 4.106345951 0.64536 1 1 1
59 102.2413 10.44868919 1.642134 0 1 0
60 103.5262 -0.076229323 -0.01198 1 1 1
61 98.244 3.90600489 0.613874 1 1 1
62 99.94508 -0.325082623 -0.05109 1 1 1
63 84.81055 2.819446561 0.443109 1 1 1
X 40
n 63
0.634921

hence within 1 standard error

= 63.4921 %

= 63.5 %


Related Solutions

Use the International Stock Market database from “Excel Databases.xls” on Blackboard. Use Excel to develop a...
Use the International Stock Market database from “Excel Databases.xls” on Blackboard. Use Excel to develop a multiple regression model to predict the DJIA by the Nasdaq, the S&P 500, the Nikkei, the Hang Seng, the FTSE 100, and the IPC. Performing a stepwise regression analysis at a 5% level of significance, which independent variable is the best single predictor of the DJIA? This is Step 1 of the stepwise regression. Nasdaq S&P 500 Nikkei Hang Seng FTSE 100 IPC https://drive.google.com/file/d/19TI3HId0greXS0nkmDuoITv1IMPF_TUK/view?usp=sharing...
Use the International Stock Market database from “Excel Databases.xls” on Blackboard. Use Excel to develop a...
Use the International Stock Market database from “Excel Databases.xls” on Blackboard. Use Excel to develop a multiple regression model to predict the DJIA by the Nasdaq, the S&P 500, the Nikkei, the Hang Seng, the FTSE 100, and the IPC. Performing a stepwise regression analysis at a 5% level of significance, add the independent variable from Step 2 and continue to perform the stepwise regression analysis until you have reached the best linear model. Which independent variables are in the...
QUESTION 8 Use the Manufacturing database from “Excel Databases.xls” on Blackboard. Use Excel to develop a...
QUESTION 8 Use the Manufacturing database from “Excel Databases.xls” on Blackboard. Use Excel to develop a multiple regression model to predict Cost of Materials by Number of Employees, Number of Production Workers, Value Added by Manufacture, New Capital Expenditures, and End-of-Year Inventories. Use Excel to perform a backward elimination regression analysis at a 5% level of significance. What is the test statistic of the independent variable that is dropped from the linear model in the first step. Write your answer...
Use the Manufacturing database from “Excel Databases.xls” on Blackboard. Use Excel to develop a multiple regression...
Use the Manufacturing database from “Excel Databases.xls” on Blackboard. Use Excel to develop a multiple regression model to predict Cost of Materials by Number of Employees, New Capital Expenditures, Value Added by Manufacture, and End-of-Year Inventories. Locate the observed value that is in Industrial Group 12 and has 7 employees. Based on the model and the multiple regression output, what is the corresponding residual of this observation? Write your answer as a number, round to 2 decimal places. **Answer should...
Use the Financial database from “Excel Databases.xls” on Blackboard. Use Total Revenues, Total Assets, Return on...
Use the Financial database from “Excel Databases.xls” on Blackboard. Use Total Revenues, Total Assets, Return on Equity, Earnings Per Share, Average Yield, and Dividends Per Share to predict the average P/E ratio for a company. Use Excel to perform a forward selection regression analysis. Assume a 5% level of significance. Identify observation 2 in the original dataset. Use the observed values from observation 2 to find the predicted value y-hat based on your final model selected. Write your answer as...
Use the Financial database from “Excel Databases.xls” on Blackboard. Use Total Revenues, Total Assets, Return on...
Use the Financial database from “Excel Databases.xls” on Blackboard. Use Total Revenues, Total Assets, Return on Equity, Earnings Per Share, Average Yield, and Dividends Per Share to predict the average P/E ratio for a company. Use Excel to perform a forward selection regression analysis. Assume a 5% level of significance. Based on your final model, what is the p-value from the test of the overall model? Write your answer as a number and round to 3 decimal places. Excel Data:...
Use Excel to develop a regression model for the Consumer Food Database (using the “Excel Databases.xls”...
Use Excel to develop a regression model for the Consumer Food Database (using the “Excel Databases.xls” file) to predict Annual Food Spending by Annual Household Income. Assume a 5% level of significance. (file here: https://drive.google.com/file/d/13uDUXwoSRZHEUtjMUedu2yjR_4lrLepC/view?usp=sharing ) Must complete all the parts to this problem: PART 1: Perform a simple linear regression in Excel to predict Annual Food Spending by Annual Household Income and output the results. Include the Regression Statistics, ANOVA, and table of Coefficients for each model. PART 2:...
Use Excel to develop a regression model for the Hospital Database (using the “Excel Databases.xls” file...
Use Excel to develop a regression model for the Hospital Database (using the “Excel Databases.xls” file on Blackboard) to predict the number of Personnel by the number of Births. Perform a test of the overall model, what is the value of the test statistic? Write your answer as a number, round your answer to 2 decimal places. SUMMARY OUTPUT Regression Statistics Multiple R 0.697463374 R Square 0.486455158 Adjusted R Square 0.483861497 Standard Error 590.2581194 Observations 200 ANOVA df SS MS...
1) Use Excel to develop a regression model for the Consumer Food Database (using the “Excel...
1) Use Excel to develop a regression model for the Consumer Food Database (using the “Excel Databases.xls” file on Blackboard) to predict Annual Food Spending by Annual Household Income for those living in the Metro area only.    Suppose a household in the metro area has an annual income of $60,000. Predict how much they spend on food per year. Write your answer as a number (do not include the $ sign or comma) and round to 2 decimal places....
Use Excel to develop a regression model for the Hospital Database to predict the number of...
Use Excel to develop a regression model for the Hospital Database to predict the number of Personnel by the number of Births. How many residuals are within 1 standard error? Write your answer as a whole number. Personnel Births 792 312 1762 1077 2310 1027 328 355 181 168 1077 3810 742 735 131 1 1594 1733 233 257 241 169 203 430 325 0 676 2049 347 211 79 16 505 2648 1543 2450 755 1465 959 0 325...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT