In: Statistics and Probability
Use the International Stock Market database from “Excel Databases.xls” on Blackboard. Use Excel to develop a multiple regression model to predict the Nikkei by the DJIA, the Nasdaq, the S&P 500, the Hang Seng, the FTSE 100, and the IPC. Assume a 1% level of significance.
What percent of residuals are within 1 standard error? Write your answer as a number rounded to 1 decimal place. Do not include the % sign in your answer.
Excel Data: https://drive.google.com/file/d/1TQG5r2wzLGk--75whZXyb0SDTHZTWS0S/view?usp=sharing
data
NIKKEI 225 | HANG SENG | FTSE 100 | IPC | DJIA | NASDAQ | S&P 500 |
87.63 | 1658.5 | 5774.95 | 1351.73 | 8270.87 | 1591.56 | 869.89 |
97.73 | 1856.39 | 6375.22 | 1616.08 | 8000.86 | 1476.42 | 825.88 |
89.49 | 1820.22 | 6033.18 | 1436.55 | 8776.39 | 1577.03 | 903.25 |
86.68 | 1850.86 | 7041.92 | 1612.58 | 8829.04 | 1535.57 | 896.24 |
107.68 | 2319.76 | 8780.95 | 2284.53 | 9336.93 | 1720.95 | 968.75 |
118.69 | 2678.44 | 10077.78 | 2554.66 | 10850.66 | 2091.88 | 1164.74 |
121.78 | 2929.61 | 10569.58 | 2700.02 | 11543.55 | 2367.52 | 1282.83 |
127.03 | 2834.06 | 10912.45 | 2814.32 | 11378.02 | 2325.55 | 1267.38 |
138.12 | 3182.05 | 11797.14 | 3059.82 | 11350.01 | 2292.98 | 1280 |
132.27 | 3304.82 | 12020.49 | 2886.28 | 12638.32 | 2522.66 | 1400.38 |
124.23 | 2970.75 | 11561.18 | 2996.44 | 12820.13 | 2412.8 | 1385.59 |
125.67 | 3029.8 | 11534.82 | 2757.18 | 12262.89 | 2279.1 | 1322.7 |
127.03 | 3094.02 | 11869.34 | 2721.47 | 12266.39 | 2271.48 | 1330.63 |
137.03 | 3566.91 | 12853.11 | 2706.25 | 12650.36 | 2389.86 | 1378.55 |
141.48 | 3680.01 | 13202.62 | 2744.68 | 13264.82 | 2652.28 | 1468.36 |
146.86 | 4059.75 | 13710.23 | 2887.75 | 13371.72 | 2660.96 | 1481.14 |
145.66 | 3493.38 | 13292.91 | 2824.73 | 13930.01 | 2859.12 | 1549.38 |
142.62 | 3066.91 | 12744.42 | 2795.17 | 13895.63 | 2701.5 | 1526.75 |
142.31 | 2868.1 | 12683.95 | 2738.32 | 13357.74 | 2596.36 | 1473.99 |
148.36 | 2785.83 | 13271.05 | 2918.1 | 13211.99 | 2546.27 | 1455.27 |
147.16 | 2638.3 | 13213.43 | 2979.65 | 13408.62 | 2603.23 | 1503.35 |
144.26 | 2597.52 | 12833.75 | 2650.22 | 13627.64 | 2604.52 | 1530.62 |
144.55 | 2534.49 | 12491.48 | 2643.28 | 13062.91 | 2525.09 | 1482.37 |
148.38 | 2476.25 | 11972.75 | 2381.06 | 12354.35 | 2421.64 | 1420.86 |
145.38 | 2617.79 | 12379.44 | 2533.66 | 12268.63 | 2416.15 | 1406.82 |
144.57 | 2567.06 | 12175.05 | 2442.83 | 12621.69 | 2463.93 | 1438.24 |
141.71 | 2403.98 | 11926.86 | 2268.27 | 12463.15 | 2415.29 | 1418.3 |
139.99 | 2372.8 | 11727.62 | 2145.5 | 12221.93 | 2431.77 | 1400.63 |
138.07 | 2251.33 | 11229.61 | 1969.79 | 12080.73 | 2366.71 | 1377.94 |
137.52 | 2240.08 | 11323.31 | 1942.88 | 11679.07 | 2258.43 | 1335.85 |
134.09 | 2175.71 | 10981.88 | 1810.7 | 11381.15 | 2183.75 | 1303.82 |
135.75 | 2101.99 | 10851.78 | 1804.9 | 11185.68 | 2091.47 | 1276.66 |
137.92 | 2016.67 | 10740.7 | 1699.2 | 11150.22 | 2172.09 | 1270.2 |
149.8 | 2148.93 | 11033.48 | 1870.23 | 11168.31 | 2178.88 | 1270.09 |
146.92 | 2070.09 | 10464.16 | 1805.45 | 11367.14 | 2322.57 | 1310.61 |
137.66 | 2039.02 | 10244.06 | 1820.84 | 11109.32 | 2339.79 | 1294.87 |
139.92 | 2029.29 | 10324.87 | 1837.52 | 10993.41 | 2281.39 | 1280.66 |
136.5 | 1918.66 | 9646 | 1685.12 | 10864.86 | 2305.82 | 1280.08 |
125.61 | 1942.99 | 9490.98 | 1627.2 | 10717.5 | 2205.32 | 1248.29 |
118.87 | 1879.79 | 9413.49 | 1479.4 | 10805.87 | 2232.82 | 1249.48 |
118.36 | 1984.42 | 9652.19 | 1490.35 | 10440.07 | 2120.3 | 1207.01 |
113.63 | 1949.17 | 9746.37 | 1353.07 | 10568.7 | 2151.69 | 1228.81 |
106.54 | 1927.06 | 9366.65 | 1376.06 | 10481.6 | 2152.09 | 1220.33 |
104.15 | 1827.1 | 9142.46 | 1259.04 | 10640.91 | 2184.83 | 1234.18 |
104.66 | 1782.11 | 9098.04 | 1211.94 | 10274.97 | 2056.96 | 1191.33 |
104.65 | 1783.94 | 9089.81 | 1127.03 | 10467.48 | 2068.22 | 1191.5 |
109.24 | 1729.81 | 9281.12 | 1140.06 | 10192.51 | 1921.65 | 1156.85 |
112.78 | 1802.76 | 9600.89 | 1243.08 | 10503.76 | 1999.23 | 1180.59 |
109.39 | 1740.82 | 9221.95 | 1193.78 | 10766.23 | 2051.72 | 1203.6 |
111.68 | 1830.55 | 9162.32 | 1164.34 | 10489.94 | 2062.41 | 1181.27 |
104.79 | 1821.7 | 9130.15 | 1094.63 | 10783.01 | 2175.44 | 1211.92 |
100.91 | 1683.15 | 8568.45 | 1007.95 | 10428.02 | 2096.81 | 1173.82 |
99.49 | 1682.63 | 8369.66 | 975.11 | 10027.47 | 1974.99 | 1130.2 |
101.64 | 1669.73 | 8074.64 | 906.4 | 10080.27 | 1896.84 | 1114.58 |
101.27 | 1564.33 | 8065.1 | 890.57 | 10173.92 | 1838.1 | 1104.24 |
109.97 | 1575.17 | 8032.19 | 894.2 | 10139.71 | 1887.36 | 1101.72 |
102.77 | 1552.7 | 8126.01 | 875.08 | 10435.48 | 2047.79 | 1140.84 |
106.54 | 1532.17 | 7967.62 | 891.59 | 10188.45 | 1986.74 | 1120.68 |
112.69 | 1627.42 | 8192.45 | 950.59 | 10225.57 | 1920.15 | 1107.3 |
103.45 | 1788.16 | 8479.88 | 924.09 | 10357.7 | 1994.22 | 1126.21 |
102.15 | 1671.89 | 7969.92 | 880.17 | 10583.92 | 2029.82 | 1144.94 |
99.62 | 1619.86 | 8014.26 | 782.69 | 10488.07 | 2066.15 | 1131.13 |
87.63 | 1658.5 | 5774.95 | 1351.73 | 8270.87 | 1591.56 | 869.89 |
result
SUMMARY OUTPUT | |||||||
Regression Statistics | |||||||
Multiple R | 0.942627 | ||||||
R Square | 0.888545 | ||||||
Adjusted R Square | 0.876603 | ||||||
Standard Error | 6.69507 | ||||||
Observations | 63 | ||||||
ANOVA | |||||||
df | SS | MS | F | Significance F | |||
Regression | 6 | 20011.41484 | 3335.236 | 74.40742 | 7.22E-25 | ||
Residual | 56 | 2510.142194 | 44.82397 | ||||
Total | 62 | 22521.55703 | |||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | |
Intercept | 56.7765 | 10.64499849 | 5.333631 | 1.79E-06 | 35.452 | 78.10099 | 35.452 |
HANG SENG | -0.01454 | 0.005127838 | -2.83567 | 0.006352 | -0.02481 | -0.00427 | -0.02481 |
FTSE 100 | 0.011127 | 0.002987937 | 3.723996 | 0.000457 | 0.005142 | 0.017113 | 0.005142 |
IPC | 0.009089 | 0.003239319 | 2.805767 | 0.006891 | 0.0026 | 0.015578 | 0.0026 |
DJIA | -0.00833 | 0.003949001 | -2.10978 | 0.03936 | -0.01624 | -0.00042 | -0.01624 |
NASDAQ | 0.020216 | 0.019942525 | 1.013721 | 0.315076 | -0.01973 | 0.060166 | -0.01973 |
S&P 500 | 0.014186 | 0.066891522 | 0.212068 | 0.832824 | -0.11981 | 0.148185 | -0.11981 |
RESIDUAL OUTPUT | |||||||
Observation | Predicted NIKKEI 225 | Residuals | Standard Residuals | >1 | <-1 | ||
1 | 84.81055 | 2.819446561 | 0.443109 | 1 | 1 | 1 | |
2 | 90.31252 | 7.417480745 | 1.165744 | 0 | 1 | 0 | |
3 | 82.071 | 7.418997997 | 1.165982 | 0 | 1 | 0 | |
4 | 93.07343 | -6.393426365 | -1.0048 | 1 | 0 | 0 | |
5 | 112.2575 | -4.577490967 | -0.71941 | 1 | 1 | 1 | |
6 | 121.5944 | -2.904384809 | -0.45646 | 1 | 1 | 1 | |
7 | 126.2103 | -4.430323064 | -0.69628 | 1 | 1 | 1 | |
8 | 132.7652 | -5.735162001 | -0.90135 | 1 | 1 | 1 | |
9 | 139.5343 | -1.414330353 | -0.22228 | 1 | 1 | 1 | |
10 | 134.2745 | -2.004450425 | -0.31502 | 1 | 1 | 1 | |
11 | 131.0771 | -6.847061666 | -1.0761 | 1 | 0 | 0 | |
12 | 128.7982 | -3.128155426 | -0.49163 | 1 | 1 | 1 | |
13 | 131.1913 | -4.16129081 | -0.654 | 1 | 1 | 1 | |
14 | 134.9971 | 2.032885872 | 0.319492 | 1 | 1 | 1 | |
15 | 139.0506 | 2.429407158 | 0.38181 | 1 | 1 | 1 | |
16 | 139.9435 | 6.916485324 | 1.087007 | 0 | 1 | 0 | |
17 | 143.2854 | 2.37464049 | 0.373203 | 1 | 1 | 1 | |
18 | 139.8938 | 2.726198219 | 0.428454 | 1 | 1 | 1 | |
19 | 143.2026 | -0.892599571 | -0.14028 | 1 | 1 | 1 | |
20 | 152.5017 | -4.141692803 | -0.65092 | 1 | 1 | 1 | |
21 | 154.7605 | -7.600506959 | -1.19451 | 1 | 0 | 0 | |
22 | 146.7228 | -2.462796518 | -0.38706 | 1 | 1 | 1 | |
23 | 146.1826 | -1.632601066 | -0.25658 | 1 | 1 | 1 | |
24 | 141.8137 | 6.566280433 | 1.031968 | 0 | 1 | 0 | |
25 | 146.0718 | -0.691843843 | -0.10873 | 1 | 1 | 1 | |
26 | 142.1798 | 2.390176678 | 0.375644 | 1 | 1 | 1 | |
27 | 140.2577 | 1.452311202 | 0.228248 | 1 | 1 | 1 | |
28 | 139.4705 | 0.519482161 | 0.081643 | 1 | 1 | 1 | |
29 | 133.6377 | 4.432305402 | 0.696589 | 1 | 1 | 1 | |
30 | 135.1597 | 2.360334829 | 0.370954 | 1 | 1 | 1 | |
31 | 131.6132 | 2.476789823 | 0.389256 | 1 | 1 | 1 | |
32 | 130.5626 | 5.187449627 | 0.815268 | 1 | 1 | 1 | |
33 | 131.4401 | 6.47987746 | 1.018388 | 0 | 1 | 0 | |
34 | 134.3142 | 15.48582685 | 2.433779 | 0 | 1 | 0 | |
35 | 130.36 | 16.5599532 | 2.60259 | 0 | 1 | 0 | |
36 | 130.7755 | 6.884488468 | 1.081978 | 0 | 1 | 0 | |
37 | 131.5513 | 8.368721924 | 1.315242 | 0 | 1 | 0 | |
38 | 125.7776 | 10.72235775 | 1.685144 | 0 | 1 | 0 | |
39 | 121.9176 | 3.692427061 | 0.580308 | 1 | 1 | 1 | |
40 | 120.4676 | -1.597568622 | -0.25108 | 1 | 1 | 1 | |
41 | 121.8722 | -3.512194475 | -0.55198 | 1 | 1 | 1 | |
42 | 122.0571 | -8.427148205 | -1.32442 | 1 | 0 | 0 | |
43 | 118.9759 | -12.4358957 | -1.95445 | 1 | 0 | 0 | |
44 | 116.4023 | -12.25230976 | -1.92559 | 1 | 0 | 0 | |
45 | 115.9901 | -11.3300996 | -1.78066 | 1 | 0 | 0 | |
46 | 113.7263 | -9.076333692 | -1.42645 | 1 | 0 | 0 | |
47 | 115.5969 | -6.356880077 | -0.99906 | 1 | 1 | 1 | |
48 | 118.3425 | -5.562503546 | -0.87421 | 1 | 1 | 1 | |
49 | 113.7794 | -4.389382537 | -0.68984 | 1 | 1 | 1 | |
50 | 113.7448 | -2.064810265 | -0.32451 | 1 | 1 | 1 | |
51 | 113.1601 | -8.370064855 | -1.31545 | 1 | 0 | 0 | |
52 | 108.9644 | -8.054350694 | -1.26584 | 1 | 0 | 0 | |
53 | 106.7172 | -7.227167422 | -1.13583 | 1 | 0 | 0 | |
54 | 100.7562 | 0.883825796 | 0.138904 | 1 | 1 | 1 | |
55 | 99.92433 | 1.345667045 | 0.211487 | 1 | 1 | 1 | |
56 | 100.6786 | 9.291368305 | 1.460247 | 0 | 1 | 0 | |
57 | 103.2095 | -0.439534928 | -0.06908 | 1 | 1 | 1 | |
58 | 102.4337 | 4.106345951 | 0.64536 | 1 | 1 | 1 | |
59 | 102.2413 | 10.44868919 | 1.642134 | 0 | 1 | 0 | |
60 | 103.5262 | -0.076229323 | -0.01198 | 1 | 1 | 1 | |
61 | 98.244 | 3.90600489 | 0.613874 | 1 | 1 | 1 | |
62 | 99.94508 | -0.325082623 | -0.05109 | 1 | 1 | 1 | |
63 | 84.81055 | 2.819446561 | 0.443109 | 1 | 1 | 1 | |
X | 40 | ||||||
n | 63 | ||||||
0.634921 |
hence within 1 standard error
= 63.4921 %
= 63.5 %