Question

In: Statistics and Probability

Use the Manufacturing database from “Excel Databases.xls” on Blackboard. Use Excel to develop a multiple regression...

Use the Manufacturing database from “Excel Databases.xls” on Blackboard. Use Excel to develop a multiple regression model to predict Cost of Materials by Number of Employees, New Capital Expenditures, Value Added by Manufacture, and End-of-Year Inventories.

Locate the observed value that is in Industrial Group 12 and has 7 employees. Based on the model and the multiple regression output, what is the corresponding residual of this observation? Write your answer as a number, round to 2 decimal places.

**Answer should be 542.83, I just need to know how**

SIC Code No. Emp. No. Prod. Wkrs. Value Added by Mfg. Cost of Materials Value of Indus. Shipmnts New Cap. Exp. End Yr. Inven. Indus. Grp.
201 433 370 23518 78713 4 1833 3630 1
202 131 83 15724 42774 4 1056 3157 1
203 204 169 24506 27222 4 1405 8732 1
204 100 70 21667 37040 4 1912 3407 1
205 220 137 20712 12030 4 1006 1155 1
206 89 69 12640 13674 3 873 3613 1
207 26 18 4258 19130 3 487 1946 1
208 143 72 35210 33521 4 2011 7199 1
209 171 126 20548 19612 4 1135 3135 1
211 21 15 23442 5557 3 605 5506 2
212 3 2 287 163 1 2 42 2
213 2 2 1508 314 1 15 155 2
214 6 4 624 2622 1 27 554 2
221 52 47 2471 4219 2 292 929 3
222 74 63 4307 5357 2 454 1427 3
223 13 12 673 1061 1 20 325 3
224 17 13 817 707 1 84 267 3
225 169 147 8986 10421 3 534 2083 3
226 51 41 3145 4140 2 220 697 3
227 55 44 4076 7125 2 176 1446 3
228 84 76 3806 8994 2 423 1014 3
229 61 47 4276 5504 2 464 1291 3
231 27 22 1239 716 1 22 356 4
232 200 178 9423 8926 3 200 2314 4
233 294 250 11045 11121 3 189 2727 4
234 38 32 1916 2283 1 29 682 4
235 17 14 599 364 1 21 197 4
236 34 28 2063 1813 1 20 450 4
237 1 1 34 71 1 2 17 4
238 31 25 1445 1321 1 16 526 4
239 224 179 10603 12376 3 465 2747 4
241 83 68 5775 9661 3 539 578 5
242 172 147 10404 19285 4 1071 3979 5
243 257 209 13274 18632 4 711 3329 5
244 51 43 1909 2170 1 88 355 5
245 82 68 4606 7290 2 182 580 5
249 94 78 5518 8135 2 715 1604 5
251 273 233 12464 12980 3 481 3535 6
252 70 53 5447 4011 2 358 829 6
253 37 29 2290 5101 2 128 447 6
254 81 61 4182 3755 2 177 956 6
259 54 39 2818 2694 2 109 718 6
261 15 11 2201 3279 2 698 725 7
262 116 90 18848 20596 4 3143 4257 7
263 55 42 9655 10604 3 2360 1502 7
265 212 163 15668 24634 4 1352 3976 7
267 232 182 25918 28963 4 1750 5427 7
271 403 136 30692 8483 4 1277 894 8
272 121 16 17982 6940 3 311 1216 8
273 136 57 17857 8863 3 618 3736 8
274 69 25 9699 2823 2 144 874 8
275 604 437 38407 29572 4 2959 4300 8
276 41 28 3878 3811 2 198 688 8
277 21 12 3989 1047 2 66 577 8
278 65 50 4388 2055 2 130 504 8
279 55 39 4055 1098 2 210 236 8
281 80 45 16567 11298 3 2002 2644 9
282 115 79 25025 34596 4 3731 6192 9
283 213 106 59813 27187 4 4301 11533 9
284 126 75 31801 19932 4 1304 4535 9
285 51 28 8497 9849 3 404 2178 9
286 126 75 28886 46935 4 6269 8577 9
287 37 24 12277 11130 3 1025 2354 9
289 76 45 11547 13085 3 1006 2749 9
291 67 43 26006 132880 4 5197 10718 10
295 25 18 3464 6182 2 251 658 10
299 14 8 2187 4446 2 124 670 10
301 65 54 7079 7091 3 579 1067 11
302 8 7 442 496 1 9 175 11
305 61 46 4528 3805 2 341 1057 11
306 122 95 7275 7195 3 435 1411 11
308 763 598 55621 57264 4 5658 11874 11
311 15 12 1313 1865 1 52 404 12
313 3 2 162 163 1 1 35 12
314 37 31 1907 1682 1 35 716 12
315 2 2 53 85 1 12 62 12
316 6 4 747 395 1 18 199 12
317 8 7 328 255 1 6 75 12
319 7 6 233 177 1 4 40 12
321 12 9 1717 943 1 248 282 13
322 60 51 6532 3527 2 853 1505 13
323 64 50 4850 4254 2 493 883 13
324 17 13 3509 2282 2 495 828 13
325 31 25 2176 1387 1 201 700 13
326 45 36 2696 1183 1 154 600 13
327 205 152 15739 17010 4 1200 1966 13
328 17 13 999 565 1 50 263 13
329 72 53 7838 5432 2 464 1652 13
331 221 174 29180 45696 4 3433 12198 14
332 128 106 9061 6913 3 651 1543 14
333 35 26 4200 11184 3 635 1834 14
334 15 11 1410 5735 2 90 694 14
335 162 123 16670 31892 4 1761 6377 14
336 94 79 5856 4696 2 459 938 14
339 32 23 3164 2790 2 271 800 14
341 33 27 3999 9364 2 526 1453 15
342 140 107 11750 8720 3 620 3124 15
343 45 32 4412 3527 2 178 1121 15
344 432 315 27974 31527 4 1139 7204 15
345 104 81 6936 4909 2 421 1768 15
346 259 211 19880 21531 4 1908 3997 15
347 129 99 7793 6232 3 724 1181 15
348 40 24 3528 1689 2 85 1077 15
349 300 219 21718 19273 4 1273 6460 15
351 79 55 10513 12954 3 678 3679 16
352 94 70 9545 11858 3 414 3339 16
353 205 133 18178 23474 4 889 7344 16
354 295 211 22673 14343 4 1485 6730 16
355 192 110 19221 16515 4 1334 6823 16
356 265 172 23110 18543 4 1260 7898 16
357 259 96 41135 60857 4 2917 10277 16
358 201 147 17521 21819 4 907 4857 16
359 392 293 25322 13897 4 1568 4964 16
361 74 51 6700 5523 2 308 1495 17
362 171 120 14278 12657 3 784 3887 17
363 108 87 9466 12578 3 721 2299 17
364 157 117 13428 11065 3 671 3076 17
365 49 37 3459 7621 2 485 1070 17
366 258 120 38705 29591 4 2268 9467 17
367 588 368 84059 44486 4 14345 13145 17
369 151 106 13920 13398 3 1286 3514 17
371 772 634 105899 223639 4 10264 15852 18
372 377 190 45220 42367 4 2023 36814 18
373 141 108 7903 7760 3 351 2165 18
374 31 23 2590 4363 2 97 1233 18
375 18 14 1435 1674 1 131 412 18
376 81 29 9986 8120 3 490 4770 18
379 47 35 3564 5476 2 142 1102 18
381 186 68 21071 8760 4 1223 6183 19
382 272 141 29028 18028 4 1466 7681 19
384 268 157 31051 16787 4 1648 7761 19
385 27 17 2390 1020 1 197 426 19
386 61 36 14032 8114 3 724 2290 19
387 6 4 415 382 1 17 177 19
391 43 30 2761 3646 2 119 1451 20
393 13 10 685 506 1 15 328 20
394 103 76 8327 6604 3 396 2608 20
395 35 26 2643 1789 1 197 799 20
396 24 19 1406 997 1 51 415 20
399 179 123 11199 8530 3 595 2861 20

Solutions

Expert Solution

After performing regression analysis in EXCEL the following results has been obtained

Sl. No. SIC Code No. Emp. Value Added by Mfg. New Cap. Exp. End Yr. Inven. Cost of Materials
1 201 433 23518 1833 3630 78713
2 202 131 15724 1056 3157 42774
3 203 204 24506 1405 8732 27222
4 204 100 21667 1912 3407 37040
5 205 220 20712 1006 1155 12030
6 206 89 12640 873 3613 13674
7 207 26 4258 487 1946 19130
8 208 143 35210 2011 7199 33521
9 209 171 20548 1135 3135 19612
10 211 21 23442 605 5506 5557
11 212 3 287 2 42 163
12 213 2 1508 15 155 314
13 214 6 624 27 554 2622
14 221 52 2471 292 929 4219
15 222 74 4307 454 1427 5357
16 223 13 673 20 325 1061
17 224 17 817 84 267 707
18 225 169 8986 534 2083 10421
19 226 51 3145 220 697 4140
20 227 55 4076 176 1446 7125
21 228 84 3806 423 1014 8994
22 229 61 4276 464 1291 5504
23 231 27 1239 22 356 716
24 232 200 9423 200 2314 8926
25 233 294 11045 189 2727 11121
26 234 38 1916 29 682 2283
27 235 17 599 21 197 364
28 236 34 2063 20 450 1813
29 237 1 34 2 17 71
30 238 31 1445 16 526 1321
31 239 224 10603 465 2747 12376
32 241 83 5775 539 578 9661
33 242 172 10404 1071 3979 19285
34 243 257 13274 711 3329 18632
35 244 51 1909 88 355 2170
36 245 82 4606 182 580 7290
37 249 94 5518 715 1604 8135
38 251 273 12464 481 3535 12980
39 252 70 5447 358 829 4011
40 253 37 2290 128 447 5101
41 254 81 4182 177 956 3755
42 259 54 2818 109 718 2694
43 261 15 2201 698 725 3279
44 262 116 18848 3143 4257 20596
45 263 55 9655 2360 1502 10604
46 265 212 15668 1352 3976 24634
47 267 232 25918 1750 5427 28963
48 271 403 30692 1277 894 8483
49 272 121 17982 311 1216 6940
50 273 136 17857 618 3736 8863
51 274 69 9699 144 874 2823
52 275 604 38407 2959 4300 29572
53 276 41 3878 198 688 3811
54 277 21 3989 66 577 1047
55 278 65 4388 130 504 2055
56 279 55 4055 210 236 1098
57 281 80 16567 2002 2644 11298
58 282 115 25025 3731 6192 34596
59 283 213 59813 4301 11533 27187
60 284 126 31801 1304 4535 19932
61 285 51 8497 404 2178 9849
62 286 126 28886 6269 8577 46935
63 287 37 12277 1025 2354 11130
64 289 76 11547 1006 2749 13085
65 291 67 26006 5197 10718 132880
66 295 25 3464 251 658 6182
67 299 14 2187 124 670 4446
68 301 65 7079 579 1067 7091
69 302 8 442 9 175 496
70 305 61 4528 341 1057 3805
71 306 122 7275 435 1411 7195
72 308 763 55621 5658 11874 57264
73 311 15 1313 52 404 1865
74 313 3 162 1 35 163
75 314 37 1907 35 716 1682
76 315 2 53 12 62 85
77 316 6 747 18 199 395
78 317 8 328 6 75 255
79 319 7 233 4 40 177
80 321 12 1717 248 282 943
81 322 60 6532 853 1505 3527
82 323 64 4850 493 883 4254
83 324 17 3509 495 828 2282
84 325 31 2176 201 700 1387
85 326 45 2696 154 600 1183
86 327 205 15739 1200 1966 17010
87 328 17 999 50 263 565
88 329 72 7838 464 1652 5432
89 331 221 29180 3433 12198 45696
90 332 128 9061 651 1543 6913
91 333 35 4200 635 1834 11184
92 334 15 1410 90 694 5735
93 335 162 16670 1761 6377 31892
94 336 94 5856 459 938 4696
95 339 32 3164 271 800 2790
96 341 33 3999 526 1453 9364
97 342 140 11750 620 3124 8720
98 343 45 4412 178 1121 3527
99 344 432 27974 1139 7204 31527
100 345 104 6936 421 1768 4909
101 346 259 19880 1908 3997 21531
102 347 129 7793 724 1181 6232
103 348 40 3528 85 1077 1689
104 349 300 21718 1273 6460 19273
105 351 79 10513 678 3679 12954
106 352 94 9545 414 3339 11858
107 353 205 18178 889 7344 23474
108 354 295 22673 1485 6730 14343
109 355 192 19221 1334 6823 16515
110 356 265 23110 1260 7898 18543
111 357 259 41135 2917 10277 60857
112 358 201 17521 907 4857 21819
113 359 392 25322 1568 4964 13897
114 361 74 6700 308 1495 5523
115 362 171 14278 784 3887 12657
116 363 108 9466 721 2299 12578
117 364 157 13428 671 3076 11065
118 365 49 3459 485 1070 7621
119 366 258 38705 2268 9467 29591
120 367 588 84059 14345 13145 44486
121 369 151 13920 1286 3514 13398
122 371 772 105899 10264 15852 223639
123 372 377 45220 2023 36814 42367
124 373 141 7903 351 2165 7760
125 374 31 2590 97 1233 4363
126 375 18 1435 131 412 1674
127 376 81 9986 490 4770 8120
128 379 47 3564 142 1102 5476
129 381 186 21071 1223 6183 8760
130 382 272 29028 1466 7681 18028
131 384 268 31051 1648 7761 16787
132 385 27 2390 197 426 1020
133 386 61 14032 724 2290 8114
134 387 6 415 17 177 382
135 391 43 2761 119 1451 3646
136 393 13 685 15 328 506
137 394 103 8327 396 2608 6604
138 395 35 2643 197 799 1789
139 396 24 1406 51 415 997
140 399 179 11199 595 2861 8530
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept -587.806 1806.693 -0.325 0.745 -4160.889 2985.277 -4160.889 2985.277
No. Emp. 1.697 18.214 0.093 0.926 -34.325 37.718 -34.325 37.718
Value Added by Mfg. 0.770 0.282 2.725 0.007 0.211 1.328 0.211 1.328
New Cap. Exp. 3.655 1.576 2.319 0.022 0.538 6.772 0.538 6.772
End Yr. Inven. 0.403 0.493 0.816 0.416 -0.573 1.379 -0.573 1.379
Regression Statistics
Multiple R 0.781
R Square 0.609
Adjusted R Square 0.598
Standard Error 15582.722
Observations 140
ANOVA
df SS MS F Significance F
Regression 4 51130741892 1.28E+10 52.64237 1.17757E-26
Residual 135 32780866936 2.43E+08
Total 139 83911608829

RESIDUAL OUTPUT

Observation Predicted Cost of Materials Residuals
1 26413.40 52299.60
2 16870.49 25903.51
3 27276.12 -54.12
4 24622.41 12417.59
5 19872.12 -7842.12
6 13939.91 -265.91
7 5298.10 13831.90
8 37010.20 -3489.20
9 20931.81 -1319.81
10 21922.93 -16365.93
11 -337.55 500.55
12 693.72 -379.72
13 224.58 2397.42
14 2844.14 1374.86
15 5087.58 269.42
16 156.35 904.65
17 484.56 222.44
18 9407.36 1013.64
19 3004.67 1135.33
20 3869.03 3255.97
21 4439.20 4554.80
22 5023.43 480.57
23 635.61 80.39
24 8668.58 257.42
25 10202.85 918.15
26 1332.34 950.66
27 58.27 305.73
28 1312.36 500.64
29 -545.78 616.78
30 847.53 473.47
31 10760.72 1615.28
32 6201.64 3459.36
33 13230.60 6054.40
34 14006.48 4625.52
35 1432.95 737.05
36 3995.94 3294.06
37 7079.06 1055.94
38 12652.37 327.63
39 5366.60 -1355.60
40 1885.75 3215.25
41 3801.02 -46.02
42 2360.77 333.23
43 3975.35 -696.35
44 27321.39 -6725.39
45 16169.29 -5565.29
46 18376.65 6257.35
47 28340.36 622.64
48 28750.74 -20267.74
49 15086.78 -8146.78
50 17153.22 -8290.22
51 7874.05 -5051.05
52 42550.85 -12978.85
53 3467.94 343.06
54 2992.26 -1945.26
55 3578.59 -1523.59
56 3489.74 -2391.74
57 20684.08 -9386.08
58 35003.49 -407.49
59 66184.74 -38997.74
60 30699.78 -10767.78
61 8393.80 1455.20
62 48231.96 -1296.96
63 13620.70 -2490.70
64 13214.57 -129.57
65 42858.85 90021.15
66 3303.73 2878.27
67 1842.64 2603.36
68 7518.11 -427.11
69 -130.59 626.59
70 4673.58 -868.58
71 7377.92 -182.92
72 68988.35 -11724.35
73 801.21 1063.79
74 -440.25 603.25
75 1359.34 322.66
76 -474.78 559.78
77 143.37 251.63
78 -269.59 524.59
79 -365.83 542.83
80 1774.40 -831.40
81 8266.49 -4739.49
82 5412.05 -1158.05
83 4285.14 -2003.14
84 2156.55 -769.55
85 2368.53 -1185.53
86 17054.19 -44.19
87 498.78 66.22
88 7929.57 -2497.57
89 39711.91 5984.09
90 9605.67 -2692.67
91 5764.57 5419.43
92 1131.59 4603.41
93 21525.27 10366.73
94 6135.25 -1439.25
95 3214.97 -424.97
96 5054.56 4309.44
97 12219.58 -3499.58
98 3987.11 -460.11
99 28744.90 2782.10
100 7179.05 -2270.05
101 23739.57 -2208.57
102 8752.27 -2520.27
103 2940.46 -1251.46
104 23895.11 -4622.11
105 11599.38 1354.62
106 9777.73 2080.27
107 19961.29 3512.71
108 25505.45 -11162.45
109 22158.84 -5643.84
110 25439.02 -6896.02
111 46319.58 14537.42
112 18512.75 3306.25
113 27301.29 -13404.29
114 6423.47 -900.47
115 15125.05 -2468.05
116 10443.90 2134.10
117 13707.24 -2642.24
118 4361.87 3259.13
119 41748.75 -12157.75
120 122847.89 -78361.89
121 16500.18 -3102.18
122 126146.26 97492.74
123 57085.99 -14718.99
124 7890.28 -130.28
125 2309.81 2053.19
126 1192.20 481.80
127 10949.37 -2829.37
128 3198.47 2277.53
129 22909.28 -14149.28
130 30672.19 -12644.19
131 32920.19 -16133.19
132 2189.52 -1169.52
133 13886.44 -5772.44
134 -124.72 506.72
135 2630.04 1015.96
136 148.52 357.48
137 8495.13 -1891.13
138 2548.10 -759.10
139 888.85 108.15
140 11664.27 -3134.27

First Locate the observed value serial number (79) in the given data for Industrial Group 12 and has 7 employees. for that corresponding serial number (79) Based on the model and the multiple regression output, the corresponding residual of this observation is 542.83.


Related Solutions

QUESTION 8 Use the Manufacturing database from “Excel Databases.xls” on Blackboard. Use Excel to develop a...
QUESTION 8 Use the Manufacturing database from “Excel Databases.xls” on Blackboard. Use Excel to develop a multiple regression model to predict Cost of Materials by Number of Employees, Number of Production Workers, Value Added by Manufacture, New Capital Expenditures, and End-of-Year Inventories. Use Excel to perform a backward elimination regression analysis at a 5% level of significance. What is the test statistic of the independent variable that is dropped from the linear model in the first step. Write your answer...
Use the International Stock Market database from “Excel Databases.xls” on Blackboard. Use Excel to develop a...
Use the International Stock Market database from “Excel Databases.xls” on Blackboard. Use Excel to develop a multiple regression model to predict the DJIA by the Nasdaq, the S&P 500, the Nikkei, the Hang Seng, the FTSE 100, and the IPC. Performing a stepwise regression analysis at a 5% level of significance, which independent variable is the best single predictor of the DJIA? This is Step 1 of the stepwise regression. Nasdaq S&P 500 Nikkei Hang Seng FTSE 100 IPC https://drive.google.com/file/d/19TI3HId0greXS0nkmDuoITv1IMPF_TUK/view?usp=sharing...
Use the International Stock Market database from “Excel Databases.xls” on Blackboard. Use Excel to develop a...
Use the International Stock Market database from “Excel Databases.xls” on Blackboard. Use Excel to develop a multiple regression model to predict the Nikkei by the DJIA, the Nasdaq, the S&P 500, the Hang Seng, the FTSE 100, and the IPC. Assume a 1% level of significance. What percent of residuals are within 1 standard error? Write your answer as a number rounded to 1 decimal place. Do not include the % sign in your answer. Excel Data: https://drive.google.com/file/d/1TQG5r2wzLGk--75whZXyb0SDTHZTWS0S/view?usp=sharing
Use the International Stock Market database from “Excel Databases.xls” on Blackboard. Use Excel to develop a...
Use the International Stock Market database from “Excel Databases.xls” on Blackboard. Use Excel to develop a multiple regression model to predict the DJIA by the Nasdaq, the S&P 500, the Nikkei, the Hang Seng, the FTSE 100, and the IPC. Performing a stepwise regression analysis at a 5% level of significance, add the independent variable from Step 2 and continue to perform the stepwise regression analysis until you have reached the best linear model. Which independent variables are in the...
Use Excel to develop a regression model for the Consumer Food Database (using the “Excel Databases.xls”...
Use Excel to develop a regression model for the Consumer Food Database (using the “Excel Databases.xls” file) to predict Annual Food Spending by Annual Household Income. Assume a 5% level of significance. (file here: https://drive.google.com/file/d/13uDUXwoSRZHEUtjMUedu2yjR_4lrLepC/view?usp=sharing ) Must complete all the parts to this problem: PART 1: Perform a simple linear regression in Excel to predict Annual Food Spending by Annual Household Income and output the results. Include the Regression Statistics, ANOVA, and table of Coefficients for each model. PART 2:...
Use Excel to develop a regression model for the Hospital Database (using the “Excel Databases.xls” file...
Use Excel to develop a regression model for the Hospital Database (using the “Excel Databases.xls” file on Blackboard) to predict the number of Personnel by the number of Births. Perform a test of the overall model, what is the value of the test statistic? Write your answer as a number, round your answer to 2 decimal places. SUMMARY OUTPUT Regression Statistics Multiple R 0.697463374 R Square 0.486455158 Adjusted R Square 0.483861497 Standard Error 590.2581194 Observations 200 ANOVA df SS MS...
Use the Financial database from “Excel Databases.xls” on Blackboard. Use Total Revenues, Total Assets, Return on...
Use the Financial database from “Excel Databases.xls” on Blackboard. Use Total Revenues, Total Assets, Return on Equity, Earnings Per Share, Average Yield, and Dividends Per Share to predict the average P/E ratio for a company. Use Excel to perform a forward selection regression analysis. Assume a 5% level of significance. Identify observation 2 in the original dataset. Use the observed values from observation 2 to find the predicted value y-hat based on your final model selected. Write your answer as...
Use the Financial database from “Excel Databases.xls” on Blackboard. Use Total Revenues, Total Assets, Return on...
Use the Financial database from “Excel Databases.xls” on Blackboard. Use Total Revenues, Total Assets, Return on Equity, Earnings Per Share, Average Yield, and Dividends Per Share to predict the average P/E ratio for a company. Use Excel to perform a forward selection regression analysis. Assume a 5% level of significance. Based on your final model, what is the p-value from the test of the overall model? Write your answer as a number and round to 3 decimal places. Excel Data:...
Use Excel to develop a regression model for the Hospital Database to predict the number of...
Use Excel to develop a regression model for the Hospital Database to predict the number of Personnel by the number of Births. How many residuals are within 1 standard error? Write your answer as a whole number. Personnel Births 792 312 1762 1077 2310 1027 328 355 181 168 1077 3810 742 735 131 1 1594 1733 233 257 241 169 203 430 325 0 676 2049 347 211 79 16 505 2648 1543 2450 755 1465 959 0 325...
Use Excel to develop a regression model for the Hospital Database to predict the number of...
Use Excel to develop a regression model for the Hospital Database to predict the number of Personnel by the number of Births. How many residuals are within 1 standard error? Write your answer as a whole number. Personnel(y) Births(x) 792 312 1762 1077 2310 1027 328 355 181 168 1077 3810 742 735 131 1 1594 1733 233 257 241 169 203 430 325 0 676 2049 347 211 79 16 505 2648 1543 2450 755 1465 959 0 325...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT