Question

In: Physics

Given the mass of two blocks that collide, and the velocities of each block before and...

Given the mass of two blocks that collide, and the velocities of each block before and after the collision, be able to determine whether the collision was elastic, partially or completely inelastic, or not possible since an unnamed external force would be necessary to change the momentum, and/or kinetic energy of the system.

Please explain in simplest terms and give an example using units given.

Solutions

Expert Solution

A collision will be completely elastic

If both momentum and energy is conserved. In head on , perfectly elastic collisions ( where one of the object is stationary) , the velocity of first object becomes velocity of second object and vice versa.

---------------------------------------

A partial inelastic collision is where momentum is conserved but there is a small loss in energy as the result of collision. This lost energy will be dissipated as heat or noise. The object may or may not stick together. Usually, they don't

-----------------------------------------

A completely inelastic collision is where momentum is still conserved but a lot of energy ( usually more than half) is lost. This lost energy may result in deformation of bodies, crumpling etc.

In this collision, objects stick together and move as once after the collision.

Example - a collision between clay ball and a steel ball.

-------------------------------------


Related Solutions

Two blocks on a frictionless horizontal surface are on a collision course.One block with mass 0.25...
Two blocks on a frictionless horizontal surface are on a collision course.One block with mass 0.25 kg moves at 1 m/s to the right collides with a 0.5 kg mass at rest and the two masses stick together. What is the final speed of the blocks after the collision?           a) -0.33 m/s           b) +0.33 m/s           c) 3.27 m/s           d) 0.67 m/s           e) 0.25 m/s
The following data are given for a two-factor ANOVA with two treatments and three blocks. Block...
The following data are given for a two-factor ANOVA with two treatments and three blocks. Block 1 2 A 47 30 B 31 29 C 47 36 Using the 0.05 significance level conduct a test of hypothesis to determine whether the block or the treatment means differ. State the decision rule for treatments. (Round your answer to 1 decimal place.) State the null and alternate hypotheses for blocks. (Round your answer to 1 decimal place.) Also, state the decision rule...
When two blocks collide, they each experience the same magnitude...(click ALL the correct responses) a- force...
When two blocks collide, they each experience the same magnitude...(click ALL the correct responses) a- force b- Impulse c- change in momentum d- change in velocity
1. Suppose we have two blocks of masses m1 and m2. The block with mass m1...
1. Suppose we have two blocks of masses m1 and m2. The block with mass m1 is moving towards block m2 at speed v. After the collision, we measure the total kinetic energy and find that the total kinetic energy after the collision is m2/(m1+m2) less than the kinetic energy before the collision. Find the final speeds of the two blocks. What type of collision is this? 2. Explain, in words, how we know that a freely spinning asteroid in...
A) Describe what you think will happen if two cars of equal mass collide with each...
A) Describe what you think will happen if two cars of equal mass collide with each other but do not stick together. What roles do their respective speeds play in your response? Does it matter what their speeds are? (Be specific) B) how can you tell whether a collision is elastic or inelastic? What criteria do you use?
Two identical blocks of mass M = 2.60 kg each are initially at rest on a...
Two identical blocks of mass M = 2.60 kg each are initially at rest on a smooth, horizontal table. A bullet of very small mass m = 20 g (m << M) is fired at a high speed v. = 120 m/s towards the first block. It quickly exits the first block at a reduced speed of 0.40 v, then strikes the second block, quickly getting embedded inside of it. All the motion happens on the x-axis. (a) find the...
For this question (Determine the velocity of the 60 kg block A if the two blocks...
For this question (Determine the velocity of the 60 kg block A if the two blocks are released from rest and the 40 kg block B moves 0.6 m up the in cline. The coefficient of kinetic friction between both blocks and the inclined planes is = 0.05.), how is T(2) = 110 V(a)^2 instead of T(2) = -50V(a)^2
Suppose that two blocks are positioned on an Atwood machine so that the block on the...
Suppose that two blocks are positioned on an Atwood machine so that the block on the right of mass m1 hangs at a lower elevation than the block on the left of mass m2. Both blocks are at rest. Based on this observation, what can you conclude? A) m1>m2 B) m1<m2 C) m1=m2 D) You cannot conclude anything with the given information.
Consider the following four blocks, all of which are attached to identical springs: block A: mass...
Consider the following four blocks, all of which are attached to identical springs: block A: mass = 200·g, spring stretched 10·cm block B: mass = 800·g, spring stretched 20·cm block C: mass = 400·g, spring stretched 20·cm block D: mass = 400·g, spring stretched 20·cm. (a) All the blocks are placed on a level surface that has no significant friction. For each of the following ranking tasks use the symbols > and = to indicate your ranking (ties are possible),...
Two cars collide at an intersection. Car A, with a mass of 2000 kg , is...
Two cars collide at an intersection. Car A, with a mass of 2000 kg , is going from west to east, while car B, of mass 1400 kg , is going from north to south at 14.0 m/s . As a result of this collision, the two cars become enmeshed and move as one afterwards. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT