Question

In: Physics

Two blocks on a frictionless horizontal surface are on a collision course.One block with mass 0.25...

Two blocks on a frictionless horizontal surface are on a collision course.One block with mass 0.25 kg moves at 1 m/s to the right collides with a 0.5 kg mass at rest and the two masses stick together. What is the final speed of the blocks after the collision?

          a) -0.33 m/s

          b) +0.33 m/s

          c) 3.27 m/s

          d) 0.67 m/s

          e) 0.25 m/s

Solutions

Expert Solution

To relsove this problem we have should know over Momentum

Step 1.

Definition:

Momentum: In an inelastic collision, some of the kinetic energy of the colliding bodies is converted into other forms of energy such as heat or sound. Examples include traffic collisions, in which the effect of lost kinetic energy can be seen in the damage to the vehicles; electrons losing some of their energy to atoms (as in the Franck Hertz experiment); and particle accelerators in which the kinetic energy is converted into mass in the form of new particles.

In a perfectly inelastic collision (such as a bug hitting a windshield), both bodies have the same motion afterwards. If one body is motionless to begin with, the equation for conservation of momentum is

  

Step 2.

ANSWERS.

   How the block B is at rest the velocity is zero

   the correct answers is the option B

If you have any question please let me know in the comments


Related Solutions

On a horizontal frictionless surface, a small block with mass 0.200 kg has a collision with...
On a horizontal frictionless surface, a small block with mass 0.200 kg has a collision with a block of mass 0.400 kg. Immediately after the collision, the 0.200 kg block is moving at 12.0 m/s in the direction 30
A 0.25 kg mass sliding on a horizontal frictionless surface is attached to one end of...
A 0.25 kg mass sliding on a horizontal frictionless surface is attached to one end of a horizontal spring (with k = 800 N/m) whose other end is fixed. The mass has a kinetic energy of 9.0 J as it passes through its equilibrium position (the point at which the spring force is zero). 1.At what rate is the spring doing work on the mass as the mass passes through its equilibrium position? 2.At what rate is the spring doing...
A block of mass m1 travels at a speed of v0 on a frictionless horizontal surface...
A block of mass m1 travels at a speed of v0 on a frictionless horizontal surface when it comes upon a second block of mass m2 which is initially motionless. Block m2 has a massless spring with spring constant k in front of it. a. Explain why the linear momentum of the system of two blocks and spring is or is not conserved during the collision. b. Explain why the mechanical energy of the system of two blocks and spring...
A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of...
A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of mass m2=9.4 kg hangs from an ideal cord of negligible mass, which runs over an ideal pulley and then is connected to the side of the first block. The blocks are released from rest. How far will block 1 move during the 1.1 second interval?
10.42 . CP A small block on a frictionless, horizontal surface has a mass of 0.0250...
10.42 . CP A small block on a frictionless, horizontal surface has a mass of 0.0250 kg. It is attached to a massless cord passing through a hole in the surface (Fig. E10.42). The block is originally revolving at a distance of 0.300 m from the hole with an angular speed of The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.150 m. Model the block as a particle. (a)...
Two blocks of masses m and 3m are placed on a frictionless, horizontal surface. A light...
Two blocks of masses m and 3m are placed on a frictionless, horizontal surface. A light spring is attached to the more massive block, and the blocks are pushed together with the spring between them as shown in the figure below. A cord initially holding the blocks together is burned; after that happens, the block of mass 3m moves to the right with a speed of v with arrow3m = 1.70 m/s. (a) What is the velocity of the block...
2 blocks slide towards each other on a frictionless horizontal surface. Block A slides from left...
2 blocks slide towards each other on a frictionless horizontal surface. Block A slides from left to right at a speed of 3m/s. It's mass is 2kg. Block B slides from right to left at a speed of 5 m/s. It's mass is 1 kg. They stick together upon collision. 1. Find the change of momentum of block A. 2. Find the change in momentum of block B. 3. Find the change in kinetic energy of the 2 block system...
You are pushing a set of blocks along a frictionless horizontal surface. The blocks are arranged...
You are pushing a set of blocks along a frictionless horizontal surface. The blocks are arranged in order by the 1kg block, then the 2kg block, and then the 3kg block; you push the 1kg block. a. Calculate the force exerted by the 3kg block on the 2kg block. b. Calculate the force exerted by the 2kg block on the 1kg block. For both parts show if you are using Newton's 2nd or 3rd Law and where.
A small block on a frictionless horizontal surface has a mass of 2.95×10−2 kg . It...
A small block on a frictionless horizontal surface has a mass of 2.95×10−2 kg . It is attached to a massless cord passing through a hole in the surface. (See the figure below (Figure 1) .) The block is originally revolving at a distance of 0.295 m from the hole with an angular speed of 1.85 rad/s . The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.140 m ....
Consider two separate blocks with mass M1 and M2 on a horizontal frictionless surface, initially at rest. Both blocks are subjected to the same force of F
  Consider two separate blocks with mass M1 and M2 on a horizontal frictionless surface, initially at rest. Both blocks are subjected to the same force of F (applied horizontally) and they are pushed D meters on the surface. If M1<M2, which one of the following is wrong? A. Kinetic energy of block M1 is greater than the kinetic energy of block M2. B. Speed of block M1 is greater than the speed of block M2. C. Acceleration of block...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT